RedBoot™ User’s Guide

Document Version 1.92, April 2003
© 2001, 2002, 2003 Red Hat, Inc.

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0
or later (the latest version is presently available at http://www.opencontent.org/openpub/).

Distribution of substantively modified versions of this document is prohibited without the explicit permission of the copy-
right holder.

Distribution of the work or derivative of the work in any standard (paper) book form is prohibited unless prior permission
is obtained from the copyright holder.

http://www.opencontent.org/openpub/

Copyright

Red Hat, the Red Hat Shadow Man logo®, eCos™, RedBoot™, GNUPro®, and Insight™ are trade-
marks of Red Hat, Inc.

Sun Microsystems® and Solaris® are registered trademarks of Sun Microsystems, Inc.

SPARC® is a registered trademark of SPARC International, Inc., and is used under license by Sun
Microsystems, Inc.

Intel® is a registered trademark of Intel Corporation.

Motorola™ is a trademark of Motorola, Inc.

ARMP® is a registered trademark of Advanced RISC Machines, Ltd.
MIPS™ is a trademark of MIPS Technologies, Inc.

Toshiba® is a registered trademark of the Toshiba Corporation.

NEC® is a registered trademark if the NEC Corporation.

Cirrus Logic® is a registered trademark of Cirrus Logic, Inc.

Compaq® is a registered trademark of the Compaq Computer Corporation.
Matsushita™ is a trademark of the Matsushita Electric Corporation.
Samsung® and CalmRISC™ are trademarks or registered trademarks of Samsung, Inc.
Linux® is a registered trademark of Linus Torvalds.

UNIX® is a registered trademark of The Open Group.

Microsoft®, Windows®, and Windows NT® are registered trademarks of Microsoft Corporation,
Inc.

All other brand and product names, trademarks, and copyrights are the property of their respective
owners.

Warranty

eCos and RedBoot are open source software, covered by the Red Hat eCos Public License, and
you are welcome to change it and/or distribute copies of it under certain conditions. The supplied
version of eCos and/or RedBoot is supported for customers of Red Hat. See http://sources.red-
hat.com/ecos/license-overview.html

For non-customers, eCos and RedBoot software has NO WARRANTY.

Because this software is licensed free of charge, there are no warranties for it, to the extent permitted
by applicable law. Except when otherwise stated in writing, the copyright holders and/or other
parties provide the software “as is” without warranty of any kind, either expressed or implied,
including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. The entire risk as to the quality and performance of the software is with you. Should the
software prove defective, you assume the cost of all necessary servicing, repair or correction.

In no event, unless required by applicable law or agreed to in writing, will any copyright holder, or
any other party who may modify and/or redistribute the program as permitted above, be liable to
you for damages, including any general, special, incidental or consequential damages arising out
of the use or inability to use the program (including but not limited to loss of data or data being
rendered inaccurate or losses sustained by you or third parties or a failure of the program to operate
with any other programs), even if such holder or other party has been advised of the possibility of
such damages.

http://sources.redhat.com/ecos/license-overview.html

How to Contact Red Hat

Red Hat Corporate Headquarters

1801 Varsity Drive

Raleigh NC 27606 USA

Telephone (toll free): +1 888 REDHAT 1 (+1 888 733 4281)
Telephone (main line): +1 919 547 0012

Telephone (FAX line): +1 919 547 0024

Website: http://www.redhat.com/

http://www.redhat.com/

Contents
RedBoot™ User’s Guide

1707 07/ T 1| 2
L= 11 = 1 3
How to Contact Red Hat et e 4
Chapter 1 Getting Started withRedBoot... 15
1.1 More information about RedBootontheweb................... 15

1.2 Installing RedBOOt 16

1.3 USer INterface . ..o 16

14 Configuring the RedBoot Environment.................o e 16

1.4.1 Target Network Configuration............ccoooiiiiiii s 16

1.4.2 Host Network Configuration. ... 17

1.4.21 Enable TFTPon Red HatLinux6.2...............ooooiiiiiin 18

1422 Enable TFTPonRed HatLinux 7 ..., 18

14.23 Enable BOOTP/DHCP server on Red Hat Linux.................... 18

1424 Enable DNS serveron Red Hat Linux 19

1.4.2.5 RedBoot network gateway ... 20

1.4.3 Verification s 20

1.4.4 Multiple Network DEVICES e 21

Chapter 2 RedBoot Commands and Examples..................................... 22
2.1 I OAUCHION. . . 22

2.2 RedBoot Editing Commands ... 23

2.3 Common COMMEANGAS ...ttt ettt e et e e e et ee e e e e aans 24

231 CONNECHIVITY. ..ottt 25

2.3.2 GBNEIAL e 25

2.3.3 Download ProCessooooiii i e 28

2.4 Flash Image System (FIS)......oouurii e 29

2.5 Persistent State Flash-based Configuration and Control....................coooiiiiiiaa.. 32

26 Executing Programs from RedBoot. ... 36
Chapter 3 Rebuilding RedBoot.............................cooooiiiiiiiiiiiiiiiiiiiii 38
3.1 I OAUCHION. . . 38

3.1.1 Configuration export fileso 39

3.1.1.1 Making RedBoot for RAM startup ... 39

3.1.2 Platform specific instructions 40

Chapter 4 Updating RedBoot.............................ccccooiiiiiiiiiiiiiiiiiiiiiii 41
4.1 I OAUCHION. . . 41

4.1.1 Start RedBoot, Running from flash................... ... 41

4.1.2 Load and start a different version of RedBoot, running from RAM 41

4.1.3 Update the primary RedBoot flashimageooooiiiiiiiiiiinn, 42

414 Reboot; run RedBoot fromflash........ ... i 43

Chapter 5 Installationand Testingccoooiiiiiiiiiiiiiii, 44

5.1

5.2

5.3

CyClone TQB03BM0 ...ttt e 44
ST R N O 1Y 1 44
5.1.2 Initial Installation Method....... ... 44
513 EITOr COURS ..ot e 45
5.1.4 Using RedBoot with ARM Bootloaderccooiiiiiiiiii e 45
515 Flashmanagement e 46
5.1.5.1 Updating the primary RedBootimageiiiiinet. 46
5152 Updating the secondary RedBootimage 46
5.1.6 Special RedBoot Commands ... 46
51.7 1Q80310 Hardware Tests.cooiiiiii e 47
5.1.8 Rebuilding RedBOOt ... 47
5.1, I eITUPES . . 48
5.1.10 MemOry Maps ...ttt e 49
5.1.11 ReESOUICE USAGEuuiieiiiie ittt e 50
Il IQB0 82T .. e e 51
ST B O 1Y 1 51
5.2.2 Initial Installation Method....... ... 51
5.2.3 Switch Settings.......uv 52
524 LED COOES ..ottt ettt e 52
52,5 Flashmanagemento e 54
5.2.5.1 Updating the primary RedBootimageiiiinet. 54
5252 Updating the secondary RedBootimage 54
5.2.6 Special RedBoot Commands ... 54
5.2.6.1 MemOory TestS. 55
5.2.6.2 Repeating Memory Tests.........ooiiiiiiiii e 55
5.2.6.3 Repeat-On-Fail Memory Tests.............c.cciiiiiiiiiiiiians 55
5.2.6.4 Rotary Switch S1 Test 55
5.2.6.5 7SegmentLED Tests ..o 55
5.2.6.6 i82544 Ethernet Configuration.......................oooiiiiiiiiiiin, 56
5.2.6.7 Battery Status Test........oooiiiii 56
5.2.6.8 Battery Backup SDRAM Memory Test...........ccoovviiiiiiiiinn... 56
5.2.6.9 Timer Test. .o 56
5.2.6.10 PCIBUS TeSt. .o 56
5.2.6.11 CPU Cache LoOp ..o 56
5.2.7 Rebuilding RedBOOt ... 57
5.2.8 N eITUPES . .. 57
5.2.9 MemMOrY Maps ...t e 58
5,210 RESOUICE USAQE .. ovvi ittt ittt ittt ettt et e e et et 59
Intel Xscale IXDP425 Network Processor Evaluation Board....................oooooiiit 60
5.3 OVBIVIBW . . e 60
5.3.2 Initial Installation Method....... ... 60
B5.3.3 LED COGES ..ttt et et e 60
5.3.4 Special RedBoot Commands ... 61
5.3.5 Rebuilding RedBOOt ... 61
5.3.6 N erTUPES . .o 61
B5.3.7 MemMOrY Maps ..o 62

Vi

54

5.5

5.6

5.7

5.8

5.9

5.3.8 Platform Resource Usage.ooviiiiiiiiiiii e 63

Intel Xscale Generic Residential Gateway 64
5.4 OVEIVIEW .. e 64
5.4.2 Initial Installation Method....... ... 64
5.4.3 Rebuilding RedBOOt ... 64
LS |) (=3 1] o) 64
5.45 MemOry Maps ..o 65
5.4.6 Platform Resource Usage.cooiiiiiiiiiiiii e 66
Motorola PrPMC1100 CPU Card. ..o 67
5.5 OVEIVIBW .. e 67
5.5.2 Initial Installation Method....... ... 67
5.5.3 Special RedBoot Commands ... 67
5.5.4 Rebuilding RedBOOt ... 68
B5.5.8 N erTUPES ..o 68
5.5.6 MemOry Maps ...oooiiii it 69
5.5.7 Platform Resource Usage.cooviiiiiiiiiii e 69
INtel SATI00 (BrUtUS) ... e e 70
B5.6.1 OVEBIVIBW ..o e 70
5.6.2 Initial Installation Method 70
5.6.3 Special RedBoot Commands ... 70
5.6.4 MemOry Maps ...t e 70
5.6.5 ReESOUICE USAQEiiiiiiiiii i e 71
5.6.6 Rebuilding RedBOOt ...t 71
Intel StrongArm EBSA 285 ... oo 72
5.7 OVEIVIEW . . e e 72
5.7.2 Initial Installation Method 72
5.7.3 Flashmanagement e 72

5.7.3.1 Updating the primary RedBootimageoiiinet. 72

5.7.3.2 Updating the secondary RedBootimageoeeee. 72
5.7.4 Communication Channels e 72
5.7.5 Special RedBoot Commands ... 72
5.7.6 MemOry Maps ...t 73
5.7.7 RESOUICE USAQEuiiiiiiiii ittt e 73
5.7.8 Building eCos Test Cases to run with old RedBootscccoeiiin.a. 73
5.7.9 Rebuilding RedBOOt ..o 74
Intel SA1100 Multimedia Board ... 75
5.8 OVEBIVIBW .. e 75
5.8.2 Initial Installation Method 75
5.8.3 Special RedBoot Commands ... 75
5.8.4 MemOry Maps ...t e 75
5.8.5 RESOUICE USAQE ...vuiiiiii ittt ettt e et 76
5.8.6 Rebuilding RedBOOt 76
INtel SAT110 (ASSADEL) ... 77
591 OVEIVIBW . .o 77
5.9.2 Initial Installation Method 77
5.9.3 Flashmanagement e 77

5.9.3.1 Updating the primary RedBootimageiiinet. 77

Vii

5.9.3.2 Updating the secondary RedBootimage 77

5.9.4 Special RedBoot Commands ... 77
5.9.5 MemOry Maps ... e 77
5.9.6 RESOUICE USAQE ...uuiiiiiiii ittt ettt et e 78
5.9.7 Rebuilding RedBOOt ... 78
NEC uPD985xx ASCOM LAKI BOAIdcovieiiiiiiiete et e e eeaiaes, 79
D101 OVBIVIBW . ..ottt ettt e e 79
5.10.2 Initial Installation Method 79
5.10.2.1 Run a RAM-startup RedBoot ... 79
5.10.2.2 Initialize the Flash ... 80
5.10.2.3 Install POST RedBootinflash ..., 80
510.2.4 Install RedBoot in the boot block ..., 81
5.10.2.5 Install RAM-based RedBootinflash 81
5.10.3 Flashmanagemento e 81
5.10.3.1 Updating the primary ROM RedBoot image......................... 81
5.10.3.2 Updating the secondary RAM RedBootimage 82
5.10.3.3 Updating the POST RedBootimageccoovvviiiiiiiinn... 82
5.10.3.4 Starting RedBoot from ASCOM Bootimage 82
5.10.4 Communication Channelst e 82
5.10.5 Special RedBoot Commands ... 83
5.10.6 MemOry Maps ...ttt e e 83
5.10.7 ReESOUICE USAQEiiiiiiiiii it e 83
5.10.8 Rebuilding RedBOOt ... 83
Intel SA1110 ASCOM/ACN PLC2 B0oardcoiiie e e 84
5.1 OVEIVIEW . .o 84
5.11.2 Initial Installation Method 84
5.11.3 Special RedBoot Commands ... 84
5.11.4 MemOry Maps ..t e 84
5.11.5 Rebuilding RedBOOt ... 85
MIPS Atlas Board with CoreLV 4Kc and CoreLV 5KCcooiiiiiiiiiiein i, 86
D121 OVBIVIBW ..ottt e e 86
5.12.2 [Initial Installation 86
512.2.1 Quick download instructions ... 86
5.12.2.2 Atlas download format............cocoii i 86
5.12.3 Flash management e 87
5.12.31 Additional config options ..o 87
5.12.3.2 Updating the secondary RedBootimageooeveee. 87
512.3.3 Updating the primary RedBootimagecoooevnn. .. 87
5.12.4 Additional ComMmMaNdS.ooiiiii 87
5128 I erTUDES .o 88
5.12.6 MemMOrY Maps ..ottt 89
5.12.7 RESOUICE USAQE ..vuiiiitiii ittt ettt et et et et et et 89
5.12.8 Rebuilding RedBOOto 89
MIPS Malta Board with CoreLV 4Kc and CoreLV 5KC, 90
5131 OVBIVIEW . .ottt ettt et e 90
5.13.2 [Initial Installation 90
5.13.2.1 Quick download instructions ... 90

viii

5.14

5.15

5.16

5.17

5.18

5.13.2.2 Malta download format ..ot 90

5.13.3 Flashmanagemento e 91
5.13.3.1 Updating the secondary RedBootimageoeeee. 91
5.13.3.2 Updating the primary RedBootimageinn.t. 91

5.13.4 Additional commands.o 91

5135 I erTUDES .o oo e 92

5.13.6 MemOry Maps ..ottt 92

5.13.7 RESOUICE USAQE ..vviiiitiii ittt ittt et ettt et 93

5.13.8 Rebuilding RedBOOt ... 93

PMC-Sierra MIPS RM7000 Ocelot ... 94

ST 7 g O O 1Y 1 94

5.14.2 Initial Installation Method 94

5.14.3 Flash Managemento e 94
5.14.3.1 Updating the primary RedBootimageiiiinet. 94
5.14.3.2 Updating the secondary RedBootimage 94

5.14.4 Additional ComMmMaNdS.oooiiiii 94

5.14.5 MemOry Maps ...ttt e 95

5.14.6 ReESOUICE USAQEiiiiiiiiiit i e 95

5.14.7 Rebuilding RedBOOt 95

Motorola POWErPC MBX ...t e e 97

551 OVEIVIEW . . e e 97

5.15.2 Initial Installation Method 97

5.15.3 Flashmanagement e 98
5.15.3.1 Updating the primary RedBootimageiiiinet. 98
5.156.3.2 Updating the secondary RedBootimageoeeee. 98

5.15.4 Special RedBoot Commands ... 98

5.15.5 MemMOrY Maps ..ottt 98

5.15.6 RESOUICE USAQEiiiiiiiiiii i e 98

5.15.7 Rebuilding RedBOOto 98

Analogue & Micro POWerPC 860Touiriiiii et 99

D161 OVEIVIBW ...ttt e et 99

5.16.2 Initial Installation Method 99

5.16.3 Flashmanagemento e 99
5.16.3.1 Updating the primary RedBootimagecoooevinn. .. 99

5.16.4 Special RedBoot Commands ... 99

5.16.5 MemOry Maps ...t 99

5.16.6 RESOUICE USAQEuiiiiiiiiii i e 99

5.16.7 Rebuilding RedBOOLcoiiiiii e 100

ARM Evaluator7T (e7t) board with ARM7TDMIccooiiiiiiiiiiii e 101

BAT A OVEIVIEW . . e e e 101

517.2 [Initial Installation ... 101

5.17.3 Quick download inStruCtionSuoiiiiii i e 101

5.17.4 Special RedBoot Commands i 101

5.17.5 MemMOrY Maps ...ttt e e 102

5.17.6 RESOUICE USAQE ...uuniiiiiii ittt ittt ettt e eeanns 102

5.17.7 Rebuilding RedBOOLtooiiiiiii e 102

ARM Integrator board with ARM7TDMI or ARM966E ..., 103

5.19

5.20

5.21

5.22

D181 OVBIVIBW ..ottt e e 103
5.18.2 Initial Installation 103
5.18.3 Quick download instructions i 103
5.18.4 Special RedBoot Commands i 104
5.18.5 MemMOrY Maps ..ottt e 104
5.18.6 ReESOUICE USAQEviiiiiiiii i e 105
5.18.7 Rebuilding RedBoOOt ... 105
ARM ARMY7 PID, Dev7 and DevOooiiiiiiiiiii et 106
5191 OVEIVIEW .. oo 106
5.19.2 Initial Installation Method ... 106
5.19.3 Special RedBoot Commands ... 106
5.19.4 MemoOry Maps ..oooiiiiiii it e s 106
5.19.5 RESOUICE USAQE ...uuiiiiiiii ittt ettt et 106
5.19.6 Rebuilding RedBOOtcoiiiiiii e 107
Compaq iIPAQ POCKEtPC e 108
B5.20.1 OVBIVIBW ...ttt ettt et 108
5.20.2 [Initial Installation ... 108
5.20.21 Installing RedBoot on the iPAQ using Windows/CE 108
5.20.2.2 Installing RedBoot on the iPAQ - using the Compaq
bootloader. 109
5.20.2.3 Setting up and testing RedBootoo 109
5.20.2.4 Installing RedBoot permanently ... 109
5.20.2.5 Restoring Windows/CE 110
5.20.3 Flash Managemento e i 110
5.20.3.1 Updating the secondary RedBootimage 110
5.20.3.2 Updating the primary RedBootimageovnnn .. 111
5.20.4 Additional commands.oooiiiiiii e 111
5.20.5 MemOry Maps ...cooiii it 112
5.20.6 RESOUICE USAQE ...uui ittt ettt ettt et et et 112
5.20.7 Rebuilding RedBOOLcoiiiiiii e 112
Cirrus Logic EP7xxx (EDB7211, EDB7212, EDB7312)oviiiiiiiiiiiiiiiiiieaanns 113
B5.21.1 OVEIVIEW . .o e 113
5.21.2 Initial Installation Method ... 113
5.21.3 Flashmanagementoooiiiiiii e 113
5.21.31 Updating the primary RedBootimagei 113
5.21.3.2 Updating the secondary RedBootimage 113
5.21.4 Special RedBoot Commands i 113
5.21.5 MemOrY Maps ...ttt e 114
5.21.6 RESOUICE USAQE ...ttt ittt ittt ettt et e eanns 114
5.21.7 Rebuilding RedBOOtcoiiiiii e 115
Bright Star Engineering commEngine and nanoEngine..................coooiiiiiiiinn. 116
B.22.1 OVEIVIBW ...ttt 116
5.22.2 Initial Installationo 116
5.22.3 Download INStructionso 116
5.22.4 Cohabiting with POST in Flash ... e 117
5.22.5 Special RedBoot Commands ... e 118
5.22.6 MeMOIY Maps ...ttt e 118

5.23

5.24

5.25

5.26

5.27

5.28

5.22.7 Nano Platform Port ..o e 119

5.22.8 Ethernet Driver e 119
5.22.9 Rebuilding RedBOOt ..o 120
X86 Based PC. ... e 121
B5.23.1 OVEIVIEW .. ettt 121
5.23.2 Initial Installation 121
5.23.3 Flashmanagement e e 121
5.23.4 Special RedBoot Commands ... e 121
5.23.5 MeMOrY Maps ...ttt e 122
5.23.6 ReESOUICE USAQEviiiiiiiii i e 122
5.23.7 Rebuilding RedBOOtooiiiiii e 122
Samsung CalmRISC16 Core Evaluation Boardccooiiiiiiiiiiiii ... 123
B5.24.1 OVEIVIEW ..ot 123
5.24.2 Initial Installation Method ... 123
5.24.3 Special RedBoot Commands ... 123
5.24.4 Special Note on Serial Channel ... 123
5.24.5 ReESOUICE USAQEviiiiitiii it e 124
5.24.6 Rebuilding RedBOOt ... 124
Samsung CalmRISC32 Core Evaluation Boardccoiiiiiiiiiiiiii e 125
B5.25.1 OVBIVIBW ...ttt ettt et 125
5.25.2 Initial Installation Method ... 125
5.25.3 Special RedBoot Commands ... 125
5.25.4 Special Note on Serial Channel ... 125
5.25.5 ReESOUICE USAQEviiiiiiiiii e 126
5.25.6 Rebuilding RedBOOt ..o 126
Hitachi EDK7708 (€dK7708). .. .ottt et 127
B5.26.1 OVEIVIEW .. .ottt e et et ettt 127
5.26.2 Initial Installation Method ... 127
5.26.3 Flashmanagemento e 127

5.26.3.1 Updating the primary RedBootimageooeeevnnt .. 127
5.26.4 MemOry Maps ...ooiuiiiiiiii e e 127
5.26.5 ReSOUICE USAQEuviiiiiiiii i e 127
5.26.6 Rebuilding RedBOOt ..o 127
Hitachi Solution Engine 77X9 (SE77X9)t 128
B.27.1 OVEIVIEW ...ttt ettt ettt 128
5.27.2 Initial Installation Method 128
5.27.3 Flashmanagemento e 128

5.27.3.1 Updating the primary RedBootimageooeeennn. .. 128

5.27.3.2 Updating the secondary RedBootimage 129
5.27.4 Special RedBoot Commands i 129
B5.27.5 MemOry Maps ..oooiiiiiii ittt et 129
B5.27.6 Ethernet Driver e 130
5.27.7 RESOUICE USAQEviiiiiiiii ittt 130
5.27.8 Rebuilding RedBOOt ... 130
Hitachi Solution Engine 7709 (SE77X9)uiiiiiii i 131
B.28.1 OVEIVIEW ...ttt ettt e e 131
5.28.2 Initial Installation Method ... 131

Xi

5.29

5.30

5.31

5.32

5.28.3 Flashmanagemento e 131
5.28.3.1 Updating the primary RedBootimageit 131
5.28.3.2 Updating the secondary RedBootimage 132

5.28.4 Special RedBoot Commands ... e 132

5.28.5 MemMOrY Maps ...ttt e 133

5.28.6 Ethernet Drivero e 133

5.28.7 RESOUICE USAQE ...ttt ittt ittt et et 133

5.28.8 Rebuilding RedBOOtcoiiiiii e 133

Hitachi Solution Engine 7751 (SE7751).o 134

5.29.1 OVEIVIEW ..ot 134

5.29.2 |Initial Installation Method 134

5.29.3 Flashmanagement e 134
5.29.3.1 Updating the primary RedBootimagei 134
5.29.3.2 Updating the secondary RedBootimage 135

5.29.4 Special RedBoot Commands ... e 135

5.29.5 MemOry Maps ...ooviiiiiiiii e s 135

5.29.6 Ethernet Driver e 136

5.29.7 ReESOUICE USAQEuiiiiiiiii i e 136

5.29.8 Rebuilding RedBOOtcoiiiiii e 136

HItaChi HST7720P Cl . .. e 137

5.30.1 OVEIVIEW .. et e 137

5.30.2 Initial Installation Method 137

5.30.3 Flashmanagemento e 137
5.30.3.1 Updating the primary RedBootimageoi 137
5.30.3.2 Updating the secondary RedBootimage 138

5.30.4 Special RedBoot Commands ... 138

5.30.5 MemOry Maps ...ooviiiiiiiii e e 138

5.30.6 RESOUICE USAQEiiiiiiiiii it 139

5.30.7 Rebuilding RedBOOt ..o 139

Cirrus Logic SEB9312 (EP93xx) (aka SEB9213) ..ot 140

B5.31.1 OVBIVIBW ..ottt e 140

5.31.2 Initial Installation Method 140

5.31.3 Flashmanagemento e 140
5.31.3.1 Updating the primary RedBootimagec.ooeeinnn. .. 140
5.31.3.2 Updating the secondary RedBootimage 140

5.31.4 Special RedBoot Commands ... 140

5.31.5 MemMOrY Maps ...ttt 141

5.31.6 RESOUICE USAQE ...ttt ittt ettt et eanns 141

5.31.7 Rebuilding RedBOOLooiiiii e 141

Atmel AT91 Evaluation Board (EB40)ooiii e 143

B5.32.1 OVEIVIBW ...ttt 143

5.32.2 |Initial Installation Methodo e 143

5.32.3 Flashmanagementoooiiiiiii e 144
5.32.3.1 Updating the RedBoot image inflash......................o 144

5.32.4 Special RedBoot Commands ... 144

5.32.5 MemOry Maps ...ooiiiiiiiiii e e e 144

5.32.6 ReESOUICE USAQEuiiiiiiiii it 144

Xii

5.33

5.34

5.35

5.36

5.37

5.32.7 Rebuilding RedBoOot
Matsushita MN103E010 (AM33/2.0) ASB2303 Board.............ocvvviiiiiiieiiinnnaanns
5,331 OV VIBW .. ettt e
5.33.2 |Initial Installation ... e
5.33.21 Preparing to program the board ...
5.33.2.2 Preparing to use the JTAG debuggercccovvviiiiiinn
5.33.2.3 Loading the RAM-based RedBoot via JTAG

5.33.24 Loading the boot PROM-based RedBoot via the
RAM RedBOOL ...

5.33.3 Additional Commandscoiiiiiii e
5.33.4 MemoOry Maps ...oovuiiiiiii e s
5.33.5 RESOUICE USAQE ...ttt ittt ettt e e
5.33.6 Rebuilding RedBoOot
Matsushita MN103EQ010 (AM33/2.0) ASB2305 Board............cooiiiiiiiiiiiiiiiinn.
.34 OV VIBW .t
5.34.2 Initial Installation ...

5.34.2.1 Preparing to programthe board ...l

5.34.2.2 Preparing to use the JTAG debugger

5.34.2.3 Loading the RAM-based RedBoot via JTAG

5.34.24 Loading the boot PROM-based RedBoot via the
RAM RedBOOL ...t

5.34.3 Additional Commandscoiiiiiiii e
5.34.4 MemOrY Maps ...ttt e
5.34.5 ReESOUICE USAQEviiiiitiii it e
5.34.6 Rebuilding RedBOOt ...
Altera Excalibur ARM9 (excalibur_arm9) ...
5,351 OVBIVIBW ...ttt ettt e
5.35.2 Initial Installation Method
5.35.3 Flashmanagement e

5.35.3.1 Updating the primary RedBootimageooi
5.35.4 Special RedBoot Commands i
5.35.5 MemMOrY Maps ...ttt e
5.35.6 RESOUICE USAQE ...ttt ittt et
5.35.7 Rebuilding RedBoOot
Agilent AAED2000 ARMO (28€d)iiiiiiiiii et e
B5.36.1 OVEIVIBW ...ttt ettt e e
5.36.2 Initial Installation Method

5.36.2.1 RedBoot as Primary Bootmonitor ...
5.36.3 Flashmanagemento e

5.36.3.1 Updating the RedBootimagec.ccooiiiiiiiiiii ..
5.36.4 Special RedBoot Commands ...
5.36.5 MemOry Maps ...coviiiiiiii i s
5.36.6 RESOUICE USAQE ...ttt ittt e
5.36.7 Rebuilding RedBOOt ...t
NEC DDB-VRCA 37D ...ttt ettt et et e
B5.37.1 OVEIVIEW .. e e
5.37.2 Initial Installation Method ...

xiii

5.37.2.1 Updating the primary RedBootimageovnnt .. 162

5.37.3 Special RedBoot Commands ... 162

5.37.4 MemOrY Maps ...ttt e 162

5.37.5 RESOUICE USAQE ...vui ittt ettt ettt e 163

5.37.6 Ethernet Driver 163

5.37.7 Rebuilding RedBOOto 164

5.38 Fujitsu FR-V 400 (MB-93091) ...ttt e et 165

5,381 OVBIVIBW ...ttt 165

5.38.2 Initial Installation Method ... 165

5.38.2.1 Updating the primary RedBootimageooovnnn .. 165

5.38.3 Special RedBoot Commands ... 165

5.38.4 MemOrY Maps ...ttt e 165

5.38.5 RESOUICE USAQE ...vui ittt ittt et et 166

5.38.6 Rebuilding RedBOOtcooiiiiii e 166

Example 1—-1 Sample DHCP configuration file 19
Example 1-2 Sample /etc/named.conf for Red Hat LinUX 7.X..........oiiiiiiiiii e 19

Xiv

1 Getting Started with RedBoot

RedBoot™ is an acronym for "Red Hat Embedded Debug and Bootstrap", and is the standard em-
bedded system debug/bootstrap environment from Red Hat, replacing the previous generation of
debug firmware: CygMon and GDB stubs. It provides a complete bootstrap environment for a
range of embedded operating systems, such as embedded Linux and eCos™, and includes facilities
such as network downloading and debugging. It also provides a simple flash file system for boot
images.

RedBoot provides a wide set of tools for downloading and executing programs on embedded target
systems, as well as tools for manipulating the target system’s environment. It can be used for both
product development (debug support) and for end product deployment (flash and network booting).

Here are some highlights of RedBoot’s capabilities:

* Boot scripting support

* Simple command line interface for RedBoot configuration and management, accessible via
serial (terminal) or Ethernet (telnet)

* Integrated GDB stubs for connection to a host-based debugger via serial or ethernet. (Ethernet
connectivity is limited to local network only)

» Attribute Configuration - user control of aspects such as system time and date (if applicable),
default Flash image to boot from, default failsafe image, static IP address, etc.

» Configurable and extensible, specifically adapted to the target environment

» Network bootstrap support including setup and download, via BOOTP, DHCP and TFTP
* X/YModem support for image download via serial

* Power On Self Test

Although RedBoot is derived from Red Hat eCos, it may be used as a generalized system debug and
bootstrap control software for any embedded system and any operating system. For example, with
appropriate additions, RedBoot could replace the commonly used BIOS of PC (and certain other)
architectures. Red Hat is currently installing RedBoot on all embedded platforms as a standard
practice, and RedBoot is now generally included as part of all Red Hat Embedded Linux and eCos
ports. Users who specifically wish to use RedBoot with the eCos operating system should refer
to the Getting Started with eCos document, which provides information about the portability and
extendability of RedBoot in an eCos environment.

1.1 More information about RedBoot on the web

Information about the RedBoot product, including information about details of porting, customiza-
tion, training and technical support services from Red Hat, is available from the RedBoot Product
web site.

The RedBoot Net Distribution web site contains downloadable sources and documentation for all
publically released targets, including the latest features and updates.

15

http://www.redhat.com/embedded/technologies/redboot/
http://sources.redhat.com/redboot/

1.2 Installing RedBoot
To install the RedBoot package, follow the procedures detailed in the accompanying README.

Although there are other possible configurations, RedBoot is usually run from the target platform’s
flash boot sector or boot ROM, and is designed to run when your system is initially powered on.
The method used to install the RedBoot image into non-volatile storage varies from platform to
platform. In general, it requires that the image be programmed into flash in situ or programmed
into the flash or ROM using a device programmer. In some cases this will be done at manufacturing
time; the platform being delivered with RedBoot already in place. In other cases, you will have
to program RedBoot into the appropriate device(s) yourself. Installing to flash in situ may require
special cabling or interface devices and software provided by the board manufacturer. The details
of this installation process for a given platform will be found in Installation and Testing. Once
installed, user-specific configuration options may be applied, using the f conf i g command, pro-
viding that persistent data storage in flash is present in the relevant RedBoot version. See Section
1.4 for details.

1.3 User Interface

RedBoot provides a command line user interface (CLI). At the minimum, this interface is normally
available on a serial port on the platform. If more than one serial interface is available, RedBoot
is normally configured to try to use any one of the ports for the CLI. Once command input has
been received on one port, that port is used exclusively until reset. If the platform has networking
capabilities, the RedBoot CLI is also accessible using the t el net access protocol. By default,
RedBoot runs t el net on port TCP/9000, but this is configurable and/or settable by the user.

RedBoot also contains a set of GDB "stubs", consisting of code which supports the GDB remote
protocol. GDB stub mode is automatically invoked when the ’$’ character appears anywhere on a
command line unless escaped using the ’\’ character. The platform will remain in GDB stub mode
until explicitly disconnected (via the GDB protocol). The GDB stub mode is available regardless
of the connection method; either serial or network. Note that if a GDB connection is made via the
network, then special care must be taken to preserve that connection when running user code. eCos
contains special network sharing code to allow for this situation, and can be used as a model if this
methodology is required in other OS environments.

1.4 Configuring the RedBoot Environment

Once installed, RedBoot will operate fairly generically. However, there are some features that
can be configured for a particular installation. These depend primarily on whether flash and/or
networking support are available. The remainder of this discussion assumes that support for both
of these options is included in RedBoot.

1.4.1 Target Network Configuration

Each node in a networked system needs to have a unique address. Since the network support in
RedBoot is based on TCP/IP, this address is an IP (Internet Protocol) address. There are two ways

16

for a system to “know” its IP address. First, it can be stored locally on the platform. This is known
as having a static IP address. Second, the system can use the network itself to discover its IP
address. This is known as a dynamic IP address. RedBoot supports this dynamic IP address mode
by use of the BOOTP (a subset of DHCP) protocol. In this case, RedBoot will ask the network
(actually some generic server on the network) for the IP address to use.

% NOTE

Currently, RedBoot only supports BOOTP. In future releases, DHCP may also be supported,
but such support will be limited to additional data items, not lease-based address allocation.

The choice of IP address type is made via the f conf i g command. Once a selection is made, it
will be stored in flash memory. RedBoot only queries the flash configuration information at reset,
so any changes will require restarting the platform.

Here is an example of the RedBoot f conf i g command, showing network addressing:

RedBoot > fconfig -1

Run script at boot: false

Use BOOTP for network configuration: false
Local | P address: 192.168.1.29

Default server |P address: 192.168.1.101
DNS server | P address: 192.168.1.1

GDB connection port: 9000

Net wor k debug at boot tine: false

In this case, the board has been configured with a static IP address listed as the Local IP address.
The default server IP address specifies which network node to communicate with for TFTP service.
This address can be overridden directly in the TFTP commands.

The DNS server | P address option controls where RedBoot should make DNS lookups. A
setting of 0.0.0.0 will disable DNS lookups. The DNS server IP address can also be set at runtime.

If the selection for Use BOOTP for network configuration hadbeentrue, these IP
addresses would be determined at boot time, via the BOOTP protocol. The final number which
needs to be configured, regardless of IP address selection mode, is the GDB connecti on port.
RedBoot allows for incoming commands on either the available serial ports or via the network. This
port number is the TCP port that RedBoot will use to accept incoming connections.

These connections can be used for GDB sessions, but they can also be used for generic RedBoot
commands. In particular, it is possible to communicate with RedBoot via the telnet protocol. For
example, on Linux®:

%t el net redboot _board 9000
Connect ed to redboot _board
Escape character is ‘"]’.
RedBoot >

1.4.2 Host Network Configuration

RedBoot may require three different classes of service from a network host:

* dynamic IP address allocation, using BOOTP

17

» TFTP service for file downloading
* DNS server for hostname lookups

Depending on the host system, these services may or may not be available or enabled by default.
See your system documentation for more details.

In particular, on Red Hat Linux, neither of these services will be configured out of the box. The
following will provide a limited explanation of how to set them up. These configuration setups
must be done as r 00t on the host or server machine.

1.4.2.1 Enable TFTP on Red Hat Linux 6.2

1. Ensure that you have the tftp-server RPM package installed. By default, this installs the TFTP
server in a disabled state. These steps will enable it:

2. Make sure that the following line is uncommented in the control file / et ¢/ i net d. conf
tftp dgram udp wai t r oot [usr/sbin/tcpd [fusr/sbin/in.tftpd
3. If it was necessary to change the line in Step 2, then the inetd server must be restarted, which
can be done via the command:

service inet rel oad

1.4.2.2 Enable TFTP on Red Hat Linux 7

1. Ensure that the xinetd RPM is installed.
2. Ensure that the tftp-server RPM is installed.
3. Enable TFTP by means of the following:

/ sbin/ chkconfig tftp on

Reload the xinetd configuration using the command:

/ sbin/service xinetd rel oad

Create the directory /tftpboot using the command
nkdir /tftpboot

% NOTE

Under Red Hat 7 you must address files by absolute pathnames, for example: /tft p-
boot / boot . i ng not/ boot . i ng, as you may have done with other implementations.

1.4.2.3 Enable BOOTP/DHCP server on Red Hat Linux

First, ensure that you have the proper package, dhcp (not dhcpd) installed. The DHCP server
provides Dynamic Host Configuration, that is, IP address and other data to hosts on a network.
It does this in different ways. Next, there can be a fixed relationship between a certain node and
the data, based on that node’s unique Ethernet Station Address (ESA, sometimes called a MAC
address). The other possibility is simply to assign addresses that are free. The sample DHCP con-
figuration file shown does both. Refer to the DHCP documentation for more details.

18

Example 1-1 Sample DHCP configuration file

--------------- letc/dhcpd.conf ------cmmmmm
defaul t-1ease-time 600;
max- | ease-ti me 7200;
opti on subnet-mask 255.255. 255. 0;
opti on broadcast-address 192. 168. 1. 255;
opti on domai n-nane-servers 198.41.0.4, 128.9.0.107;
opti on donai n-nane “bogus. conf;
al | ow boot p;
shar ed- net wor k BOGUS {
subnet 192.168. 1.0 netnmask 255.255. 255.0 {
option routers 192.168. 1. 101,
range 192.168.1.1 192. 168. 1. 254;

}

}

host mbx {
har dwar e et hernet 08: 00: 3E: 28: 79: BS;
fi xed-address 192.168. 1. 20;
filename “/tftpboot/192.168.1.21/zl mage”;
default-| ease-tine -1;
server-nane “srvr.bugus. coni;
server-identifier 192.168.1.101;
opti on host-nanme “nbx”;

}
Once the DHCP package has been installed and the configuration file set up, type:

service dhcpd start

1.4.2.4 Enable DNS server on Red Hat Linux

First, ensure that you have the proper RPM package, cachi ng- naneser ver installed. Then
change the configuration (in/ et ¢/ named. conf) so that the f or war der s point to the primary
nameservers for your machine, normally using the nameservers listed in/ et ¢/ r esol v. conf .

Example 1-2 Sample / et ¢/ naned. conf for Red Hat Linux 7.x

--------------- /etc/named.conf -------------oooooo o
/1 generated by naned-boot conf. pl

options {
directory "/var/named";
/

i
*
* |f there is a firewall between you and nanmeservers you want
* to talk to, you might need to uncomment the query-source
* directive below. Previous versions of BlIND al ways asked
* questions using port 53, but BIND 8.1 uses an unprivil eged
* port by default.
*/
/1 query-source address * port 53;

forward first;
forwarders {
212.242. 40. 3;
212.242. 40. 51;

}s

19

I
/1 a caching only nanmeserver config

/1 Uncoment the following for Red Hat Linux 7.2 or above:
/1 controls {

/1 inet 127.0.0.1 allow { local host; } keys { rndckey; };
I},
/1 include "/etc/rndc. key";
zone "." IN{
type hint;

file "naned. ca";

}s

zone "l ocal host" IN {
type master;
file "local host.zone";
al | ow- update { none; };

zone "0.0.127.in-addr.arpa" IN {
type master;
file "naned. | ocal ";
al | ow update { none; };

Make sure the server is started with the command:

service naned start

and is started on next reboot with the command
chkconfi g naned on

Finally, you may wish to change / et ¢/ r esol v. conf touse 127. 0. 0. 1 as the nameserver
for your local machine.

1.4.2.5 RedBoot network gateway

RedBoot cannot communicate with machines on different subnets because it does not support rout-
ing. It always assumes that it can get to an address directly, therefore it always tries to ARP and
then send packets directly to that unit. This means that whatever it talks to must be on the same
subnet. If you need to talk to a host on a different subnet (even if it’s on the same ‘wire’), you need
to go through an ARP proxy, providing that there is a Linux box connected to the network which
is able to route to the TFTP server. For example: / proc/ sys/ net/i pv4/ conf/<inter-
face>/ proxy_arp where <interface>should be replaced with whichever network interface is
directly connected to the board.

1.4.3 Verification

Once your network setup has been configured, perform simple verification tests as follows:

* Reboot your system, to enable the setup, and then try to ‘ping’ the target board from a host.

* Once communication has been established, try to ping a host using the RedBoot ping command
- both by IP address and hostname.

20

* Try using the RedBoot load command to download a file from a host.

1.4.4 Multiple Network Devices

RedBoot may support more than one network device. For instance a dual port NIC may be used or
multiple PCI based NICs may be supported. RedBoot will only use one network device no matter
how many are configured into the system. Preference for the device to use may be specified with
the f conf i g command. Suppose that a RedBoot is configured for two 182559 based NICs. These
devices will typically be named i 82559 et h0 and i 82559 _et h1l. To tell RedBoot to try the
ethl device first, use:

RedBoot > fconfig net_device

net _devi ce: 82559 ethl
Updat e RedBoot non-volatile configuration - continue (y/n)? vy

If the default network device is not found, RedBoot will search for other network devices and use
the first one found.

21

2 RedBoot Commands and Examples

2.1 Introduction

RedBoot provides three basic classes of commands:
* Program loading and execution
» Flash image and configuration management
* Miscellaneous commands
Given the extensible and configurable nature of eCos and RedBoot, there may be extended or en-
hanced sets of commands available.
The basic format for commands is:
RedBoot > COWAND [-S] [-s val]operand
Commands may require additional information beyond the basic command name. In most cases

this additional information is optional, with suitable default values provided if they are not present.
The type of information required affects how it is specified:

[-9]
An optional switch. If this switch is present, then some particular action will take place. For ex-
ample in the command
RedBoot> fis init -f

the -f switch indicates to perform a full file system initialization.

[-s val]

An optional switch which requires an associated value. For example the command:
RedBoot > | oad -b 0x00100000 data_file

specifies downloading a file (via TFTP) into memory, relocating it to location 0x00100000.

oper and

This format is used in a case where a command has one operand which must always be present (no
-s 1s required since it is always implied). For example the command

RedBoot > go 0x10044
specifies executing the code starting at location 0x10044.

The list of available commands, and their syntax, can be obtained by typing hel p at the command
line:

RedBoot > hel p
Manage al i ases kept in FLASH nmenory
al i as nane [val ue]
Set/ Query the system consol e baud rate
baudrate [-b <rate>]
Manage nachi ne caches
cache [ON | OFF]
Di spl ay/ switch consol e channel
channel [-1]| <channel nunber>]

22

Di splay disk partitions
di sks
Set/ Query DNS server |P address
dns [P]
Di spl ay (hex dunmp) a range of nenory
dunp -b <location> [-] <length>] [-s]
Manage fl ash inmages

fis {cmds}
Manage configuration kept in FLASH nenory
fconfig [-i] [-I] [-n] [-f] [-d] | [-d] nickname [val ue]

Execute code at a | ocation
go [-w <timeout>] [entry]
Hel p about hel p?
hel p [<t opi c>]
Set/change | P addresses
i p_address [-| <local _ip_address>] [-h <server_address>]
Load a file
load [-r] [-v] [-d] [-c <channel>] [-h <host>] [-m {TFTP | xyzMODEM | di sk}]
[-b <base_address>] <file_nane>
Net wor k connectivity test

ping [-v] [-n <count>] [-t <timeout>] [-i <IP_addr]
-h <host >
Reset the system
reset
Di spl ay RedBoot version information
version
Di spl ay (hex dump) a range of menory
X -b <location> [-] <length>] [-5s]

Commands can be abbreviated to their shortest unique string. Thus in the list above, d, du, dum
and dump are all valid for the dump command. The f conf i g command can be abbreviated f C,
but f would be ambiguous with fi s.

There is one additional, special command. When RedBoot detects *$’* or *+’ (unless escaped via
’\”) in a command, it switches to GDB protocol mode. At this point, the eCos GDB stubs take over,
allowing connections from a GDB host. The only way to get back to RedBoot from GDB mode is
to restart the platform.

NOTE
Multiple commands may be entered on a single line, separated by the semi-colon ;” character.

The standard RedBoot command set is structured around the bootstrap environment. These com-
mands are designed to be simple to use and remember, while still providing sufficient power and
flexibility to be useful. No attempt has been made to render RedBoot as the end-all product. As
such, things such as the debug environment are left to other modules, such as GDB stubs, which
are typically included in RedBoot.

The command set may be also be extended on a platform basis.

2.2 RedBoot Editing Commands

RedBoot uses the following line editing commands.

23

A NLLTN

NOTE

In this description, AA means the character formed by typing the letter “A” while holding down
the control key.

* Delete (0x7F) or Backspace (0x08) erases the character to the left of the cursor.
* AA moves the cursor (insertion point) to the beginning of the line.

* K erases all characters on the line from the cursor to the end.

* AE positions the cursor to the end of the line.

* 2D erases the character under the cursor.

* AF moves the cursor one character to the right.

* 2B moves the cursor one character to the left.

» Apreplaces the current line by a previous line from the history buffer. A small number of lines
can be kept as history. Using *P (and "N), the current line can be replaced by any one of the
previously typed lines.

» AN replaces the current line by the next line from the history buffer.

In the case of the f conf i g command, additional editing commands are possible. As data are
entered for this command, the current/previous value will be displayed and the cursor placed at the
end of that data. The user may use the editing keys (above) to move around in the data to modify

it as appropriate. Additionally, when certain characters are entered at the end of the current value,
i.e. entered separately, certain behavior is elicited.

* " (caret) switch to editing the previous item in the f confi g list. If fconfig edits item A,
followed by item B, pressing * when changing item B, allows you to change item A. This is
similar to the up arrow. Note: P and "N do not have the same meaning while editingf confi g
data and should not be used.

* . (period) stop editing any further items. This does not change the current item.

* Return leaves the value for this item unchanged. Currently it is not possible to step through the
value for the start-up script; it must always be retyped.

2.3 Common Commands

The general format of commands is:

command <options, paraneters>

Elements are separated by the space character. Other control characters, such as Tab or editing keys
(Insert) are not currently supported.

Numbers, such as a memory location, may be specified in either decimal or hexadecimal (requires
a 0x prefix).

Commands may be abbreviated to any unique string. For example, | 0 is equivalent to | 0oa and
| oad.

24

2.3.1 Connectivity
dns [IP]

This command is used to show/change the IP address used for DNS lookups. If an IP address
0f 0.0.0.0 is entered, DNS lookups are disabled.

ip_address [-]1 <local_ip_address>] [-h <server_address>|

This command is used to show/change the basic IP addresses used by RedBoot. The -1 option
is used to set the IP address used by the target device. The -h option is used to set the default
server address, such as is used by the | oad command.

ping - Check network connectivity ping

ping [-v] [-n <count>] [-| <length>] [-t <tinmeouts>] [-r
<rate>][-i <IP_addr>] -h <IP_addr>

The ping command checks the connectivity of the local network by sending special (ICMP)
packets to a specific host. These packets should be automatically returned by that host. The
command will indicate how many of these round-trips were successfully completed.

Arguments

-V Be verbose, displaying information about each packet sent.

-n <count> Controls the number of packets to be sent. Default is 10 if -n is
not specified.

-t <timeout> How long to wait for the round-trip to complete, specified in
milliseconds. Default is 1000ms (1 second).

-r <rate> How fast to deliver packets, i.e. time between successive sends.
Default is 1000ms (1 second). Specifying "-r 0" will send packets
as quickly as possible.

-1 <length> Each packet contains some amount of payload data. This option
specifies the length of that data. The default is 64 and the value is
restricted to the range 64 .. 1400.

-1 <local IP> This allows the ping command to override its local network
address. While this is not recommended procedure, it can help
diagnose some situations, for example where BOOTP is not
working properly.

-h <host> The hostname or IP address of the other device to contact.

2.3.2 General

alias name [value]

25

The al i as command is used to maintain simple command line aliases. These aliases are
shorthand for longer expressions. When the pattern %{name} appears in a command line,
including a script, the corresponding value will be substituted.

Aliases are kept in RedBoot’s non-volatile configuration area, i.e. Flash memory.

This is an example of setting an alias. Notice the use of a quoted string when the value contains
spaces.

RedBoot > alias SBUF "-b 0x100000"
Updat e RedBoot non-vol atile configuration - are you sure (y/n)? vy
Unl ock from 0x50f 80000- 0x50f c0000:
Erase from 0x50f 80000- 0x50f c0000: .
Pr ogram from 0x0000b9e8- 0x0000c9e8 at 0x50f 80000:
Lock from Ox50f 80000- 0x50f c0000:

This example shows querying of an alias, as well as how it might be used.

RedBoot > al i as SBUF

"SBUF = '-b 0x100000’

RedBoot > d % SBUF}

0x00100000: FEO3 OOEA 0000 0000 0000 0000 0000 0000 S, |

0x00100010: 0000 0000 0000 0000 0000 0000 0000 0000 [|
baudrate [-b value]

This command sets the baud rate for the system serial console. If the platform supports non-
volatile configuration data, then the new value will be saved and used when the system is reset.

cache [ON | OFF]
This command is used to manipulate the caches on the processor.
With no options, this command specifies the state of the system caches.
When an option is given, the caches are turned off or on appropriately.
channel [-1|<channel number>]
With no arguments, this command displays the current console channel number.

When passed an argument of 0 upwards, this command switches the console channel to that
channel number. The mapping between channel numbers and physical channels is platform
specific.

When passed an argument of -1, this command reverts RedBoot to responding to whatever
channel receives input first, as happens when RedBoot initially starts execution.

cksum -b <location> -1 <length>

Computes the POSIX checksum on a range of memory (either RAM or FLASH). The value
printed can be compared with the output from the Linux program ’chksum’.

mfill -b <location> -1 <length> [-p <pattern>] [-1|-2|-4]

Fills a range of memory with the given pattern. If the pattern is ommitted, then a value of zero
is used. The options -1, -2, -4 are used to select the length of the objects used while
filling. For example, - 2 selects to fill 16 bits at a time, etc.

mcmp -s <location> -d <location> -1 <length> [-1|-2|-4]

26

Compares two ranges of memory. The options - 1, -2, -4 are used to select the length of
the objects used while comparing. For example, - 2 selects to compare 16 bits at a time, etc.

disks

This command is used to list disk partitions recognized by RedBoot.
dump -b <location> [-1 <length>] [-s]

Display (hex dump) a range of memory.

This command displays the contents of memory in hexadecimal format. It is most useful for
examining a segment of RAM or flash. If the optional -s switch is provided, then the dump
will be formatted as Motorola S-records. The X command is a synonym for dunp.

Note that this command could be detrimental if used on memory mapped hardware registers.

The memory 1s displayed at most sixteen bytes per line, first as the raw hex value, followed
by an ASCII interpretation of the data.

RedBoot > du -b 0x100 -1 0x80

0x00000100: 3C60 0004 6063 2000 7C68 03A6 4E80 0020 |<'..'c .|h..N.
0x00000110: 0000 0000 0000 0000 0000 0000 0000 0000 |......vvvuvnn.. |
0x00000120: 0000 0000 0000 0000 0000 0000 0000 0000 |......vovuvnn.. |
0x00000130: 0000 0000 0000 0000 0000 0000 0000 0000 |.....vvvvuvnnnn |
0x00000140: 0000 0000 0000 0000 0000 0000 0000 0000 |.....vvvvvnnnn |
0x00000150: 0000 0000 0000 0000 0000 0000 0000 0000 |......vvvuvnn.. |
0x00000160: 0000 0000 0000 0000 0000 0000 0000 0000 |.......ovuvnn.. |
0x00000170: 0000 0000 0000 0000 0000 0000 0000 0000 |.....vvvvunnn. |
RedBoot > d -b 0Oxfe00b000 -1 0x80

OxFEO0BOOO: 2025 700A 0000 0000 4174 7465 6D70 7420 | %..... At t enpt
OxFEO0B010: 746F 206C 6F61 6420 532D 7265 636F 7264 |to |oad S-record
OxFEO0B020: 2064 6174 6120 746F 2061 6464 7265 7373 | data to address
OxFEO0B030: 3A20 2570 205B 6E6F 7420 696E 2052 414D |: % [not in RAM
OxFEO0B040: 5DOA 0000 2A2A 2A20 5761 726E 696E 6721 |]...*** Warning!
OxFEO0BO50: 2043 6865 636B 7375 6D20 6661 696C 7572 | Checksum fail ur
OxFEOO0B060: 6520 2D20 4164 6472 3A20 256C 782C 2025 |e - Addr: % x, %
OxFEO0BO70: 3032 6C58 203C 3E20 2530 326C 580A 0000 | 02l X <> 9%92I X. ..
OxFEO0B080: 456E 7472 7920 706F 696E 743A 2025 702C | Entry point: %,
RedBoot > x -b 0x3e00000 -s -1 0x80
S31503E00000803C04E980880000808800008088000046
S31503E00010825010188948100088400001C01A040174
S31503E00020825010188948100088400002C01A03FD68
S31503E00030825010188948100088400003C01A03F95B
S31503E00040825010188948100088400004C01A03F54E
S31503E00050825010188948100088400005C01A03F141
S31503E00060825010188948100088400006C01A03ED34
S31503E00070825010188948100088400007C01A03E927

reset
Reset the system.

This command resets the platform. On many targets this is equivalent to a power-on reset, but
on others it may just cause a jump to the architecture’s reset entry resulting in a reinitialization
of the system.

version

Display RedBoot version information.

27

This command simply displays version information about RedBoot.

RedBoot > ver si on

RedBoot (tm) debug environnment - built 09:12:03, Feb 12 2001
Platform XYZ (PowerPC 860)

Copyright (C 2000, 2001, Red Hat, Inc.

RAM 0x00000000- 0x00400000

RedBoot >

2.3.3 Download Process

load

The | oad command is used to download data into the target system. Data can be loaded via
a network connection, using either the TFTP protocol, or the console serial connection using
the X/Y modem protocol. Files may also be loaded directly from local filesystems on disk.
Files to be downloaded may either be executable images in ELF executable program format,
Motorola S-record (SREC) format or raw data. The format of the command is:

load {file}[-v][-d][-b | ocation][-r][-m {xnodeni|lynmodeni|[t f t p]|[di sk]}] [-h host _I P_ad-
dress]

Arguments

file

The name of the file on the TFTP server or the local disk. Details of how this is
specified for TFTP are host-specific. For local disk files, the name must be in
disk: filename format. The disk portion must match one of the disk names listed
by the disks command.

Display a small spinner (indicator) while the download is in progress. This is just
for feedback, especially during long loads. Note that the option has no effect when
using a serial download method since it would interfere with the protocol.

Decompress gzipped image during download.

Specify which I/O channel to use for download. This option is only supported when
using either xmodem or ymodem protocol.

Specify the location in memory to which the file should be loaded. Executable
images normally load at the location to which the file was linked. This option
allows the file to be loaded to a specific memory location, possibly overriding any
assumed location.

Download raw data. Normally, the load command is used to load executable images
into memory. This option allows for raw data to be loaded. If this option is given,
-b will also be required.

28

-m The -m option is used to select the download method. The choices are:

xmodem, ymodem

serial download using standard protocols over a port. If no -c option is used,
the current console port will be used, otherwise the protocol transfer will take
place on the specified channel. When using this method, the file parameter is
not required.

tftp

network based download using the TFTP protocol.
disk

load a file from local disk.

-h Used explicitly to name a host computer to contact for the download data. This
works in TFTP mode only.

RedBoot > | o redboot. ROM -b 0x8c400000
Address offset = 0x0c400000
Entry point: 0x80000000, address range: 0x80000000-0x8000f e80

2.4 Flash Image System (FIS)

If the platform has flash memory, RedBoot can use this for image storage. Executable images, as
well as data, can be stored in flash in a simple file store. The f i S command is used to manipulate
and maintain flash images.

The available f i S commands are:

fis init [-f]
This command is used to initialize the flash Image System (FIS). It should only be executed
once, when RedBoot is first installed on the hardware. Subsequent executions will cause loss
of data in the flash (previously saved images will no longer be accessible).
If the - f option is specified, all blocks of flash memory will be erased as part of this process.

RedBoot> fis init -f
About to initialize [format] flash inage system - are you sure (y/n)? n

fis [-c] [-d] list
This command lists the images currently available in the FIS. Certain images used by RedBoot
have fixed names. Other images can be manipulated by the user.
If the -c option is specified, the image checksum is displayed instead of the Mem Addr field.

If the -d option is specified, the image dat al engt h is displayed instead of the length
[amount of flash used]. The dat al engt h is the length of data within the allocated flash
image actually being used for data.

RedBoot > fis |ist

Nare flash addr Mem addr Lengt h Entry point
RedBoot 0xA0000000 0xA0000000 0x020000 0x80000000

29

RedBoot [backup] 0xA0020000
RedBoot confi g OxAOFC0000
FI'S directory OxAOFEO000
RedBoot> fis list -c

Name flash addr
RedBoot 0xA0000000
RedBoot [backup] 0xA0020000
RedBoot config OxAOFCO000
RedBoot confi g OxAOFEO000

0x8C010000
O0xAQFC0000
OxAOFEO0000

Checksum

0x34C94A57
0x00000000
0x00000000
0x00000000

0x010000
0x020000
0x020000

Lengt h

0x020000
0x010000
0x020000
0x020000

0x80010000
0x00000000
0x00000000

Entry point
0x80000000
0x8C010000
0x00000000
0x00000000

fis free

This command shows which areas of the flash memory are currently not in use. In use means
that the block contains non-erased contents. Since it is possible to force an image to be loaded
at a particular flash location, this command can be used to check whether that location is in
use by any other image.

NOTE

There is currently no cross-checking between actual flash contents and the image direc-
tory, which mans that there could be a segment of flash which is not erased that does not
correspond to a named image, or vice-versa.

RedBoot > fis free

0xA0040000 .. 0xA07C0000
0xA0840000 .. OxAOFCO000

fis create -b <mem_base> -l <length> [-f <flash_addr>] [-e <entry_point>] [-r <ram_addr>]|
[-s <data_length>] [-n] <name>

This command creates an image in the FIS directory. The data for the image must exist in
RAM memory before the copy. Typically, you would use the RedBoot | oad command to
load an image into RAM and then the fi S cr eat e command to write it to flash.

Arguments

name
-b
-1

The name of the file, as shown in the FIS directory.
The location in RAM used to obtain the image. This is a required option.

The length of the image. If the image already exists, then the length is inferred
from when the image was previously created. If specified, and the image exists, it
must match the original value.

The location in flash for the image, which will be inferred for extant images if not
specified. If this is not provided, the first freeVblock which is large enough will be
used. Seefis free.

The execution entry address. This is used if the starting address for an image is
not known, or needs to be overridden.

The location in RAM when the image is loaded via fi s | oad. This only needs to
be specified for images which will eventually loaded viaf i s | oad. Fixed images,
such as RedBoot itself, will not need this.

30

RedBoot > fis create RedBoot
An i nage naned ‘ RedBoot’

The length of the actual data to be written to flash. If not present then the image
length (-1) value is assumed. If the value given by -s is less than -1, the remainder of
the image in flash will be left in an erased state. Note that by using this option it is
possible to create a completely empty flash image, for example to reserve space for
use by applications other than RedBoot.

If -n is specified, then only the FIS directory is updated, and no data is copied
from RAM to flash. This feature can be used to recreate the FIS entry if it has
been destroyed.

-f 0xa0000000 -b 0x8c400000 -
sure (y/n)? n

0x20000
exists - are you

RedBoot > fis create junk -b 0x8c400000 -1 0x20000
Erase from 0xa0040000- 0xa0060000: .
Pr ogram from 0x8c400000- 0x8¢c420000 at 0xa0040000:

Erase from OxaOf e0000- 0xal1000000:

Program from 0x8c7d0000- 0x8c7f OOOO. at

OxaOf e0000:

If you are loading an existing file, then the fis create command will provide some values automat-
ically, such as the flash address and flash length.

fis load [-b <memory load address>] [-c] [-d] name

This command is used to transfer an image from flash memory to RAM.

Once loaded, it may be executed using the go command. If -b is specified, then the image is
copied from flash to the specified address in RAM. If -b is not specified, the image is copied
from flash to the load address given when the image was created.

Arguments

name The name of the file, as shown in the FIS directory

-b Specify the location in memory to which the file should be loaded. Executable
images normally load at the location to which the file was linked. This option
allows the file to be loaded to a specific memory location, possibly overriding any
assumed location.

-C Compute and print the checksum of the image data after it has been loaded into
memory.

-d Decompress gzipped image while copying it from flash to RAM.

RedBoot > fis | oad RedBoot [backup]
RedBoot > go

fis delete name

This command removes an image from the FIS. The flash memory will be erased as part of
the execution of this command, as well as removal of the name from the FIS directory.

RedBoot > fis |ist

Nare flash addr Mem addr Lengt h Entry point
RedBoot 0xA0000000 0xAO0000000 0x020000 0x80000000
RedBoot [backup] 0xA0020000 0x8C010000 0x020000 0x8C010000
RedBoot config OxAOFCO000 OxAOFCO000 0x020000 0x00000000
FIS directory OxAOFEO000 OxAOFEO000 0x020000 0x00000000

31

j unk 0xA0040000 0x8C400000 0x020000 0x80000000
RedBoot > fis del ete junk
Del ete image ‘junk’ - are you sure (y/n)? vy

Erase from 0xa0040000- 0xa0060000

Erase from OxaOf e0000- 0xa1000000: .

Pr ogram from 0x8c7d0000- 0x8c7f 0000 at OxaOf e0000

NOTE

Certain images are reserved by RedBoot and cannot be deleted. RedBoot will issue a warning
if this is attempted.

fis lock -f <flash_addr> -1 <length>

This command is used to write-protect (lock) a portion of flash memory, to prevent accidental
overwriting of images. In order to make make any modifications to the flash, a matching
unlock command must be issued. This command is optional and will only be provided on
hardware which can support write-protection of the flash space.

NOTE

Depending on the system, attempting to write to write-protected flash may generate errors
or warnings, or be benignly quiet.
RedBoot > fis | ock -f 0xa0040000 -1 0x20000
Lock from 0xa0040000- 0xa0060000:

fis unlock -f <flash_addr> -1 <length>

This command is used to unlock a portion of flash memory forcibly, allowing it to be updated.
It must be issued for regions which have been locked before the FIS can reuse those portions
of flash.

RedBoot > fis unlock -f 0xa0040000 -1 0x20000
Unl ock from 0xa0040000- 0xa0060000:

fis erase -f <flash_addr> -l <length>

This command is used to erase a portion of flash memory forcibly. There is no cross-checking
to ensure that the area being erased does not correspond to a loaded image.

RedBoot > fis erase -f 0xa0040000 -1 0x20000
Erase from 0xa0040000- 0xa0060000

fis write -b <location> -l <length> -f <flash addr>

Writes data from RAM at <location> to flash.
2.5 Persistent State Flash-based Configuration and Control

RedBoot provides flash management support for storage in the flash memory of multiple executable
images and of non-volatile information such as IP addresses and other network information.

32

RedBoot on platforms that support flash based configuration information will report the following
message the first time that RedBoot is booted on the target:

flash configuration checksumerror or invalid key

This error can be ignored if no flash based configuration is desired, or can be silenced by running
thef conf i g command as described below. At this point you may also wishtorunthefi s i nit
command. See other fis commands in Section 2.4.

Certain control and configuration information used by RedBoot can be stored in flash.

The details of what information is maintained in flash differ, based on the platform and the con-
figuration. However, the basic operation used to maintain this information is the same. Using the
fconfig -1 command, the information may be displayed and/or changed.

If the optional flag - i is specified, then the configuration database will be reset to its default state.
This is also needed the first time RedBoot is installed on the target, or when updating to a newer
RedBoot with different configuration keys.

If the optional flag - | is specified, the configuration data is simply listed. Otherwise, each config-
uration parameter will be displayed and you are given a chance to change it. The entire value must
be typed - typing just carriage return will leave a value unchanged. Boolean values may be entered
using the first letter (t for true, f for false). At any time the editing process may be stopped simply
by entering a period (.) on the line. Entering the caret (") moves the editing back to the previous
item. See “RedBoot Editing Commands”, Section 2.2.

If any changes are made in the configuration, then the updated data will be written back to flash
after getting acknowledgement from the user.

If the optional flag - n is specified (with or without - |) then “nicknames” of the entries are used.
These are shorter and less descriptive than “full” names. The full name may also be displayed by
adding the - f flag.

The reason for telling you nicknames is that a quick way to set a single entry is provided, using the
format

RedBoot > fconfig nickname val ue

If no value is supplied, the command will list and prompt for only that entry. If a value is supplied,
then the entry will be set to that value. You will be prompted whether to write the new information
into flash if any change was made. For example

RedBoot > fconfig -1 -n

boot _script: false

boot p: fal se

bootp_ny_ip: 10.16.19.176

boot p_server _i p: 10.16. 19. 66

dns_ip: 10.16.19.1

gdb_port: 9000

net _debug: fal se

RedBoot > fconfig bootp_nmy_ip 10.16.19.177

boot p_ny_ip: 10.16.19.176 Setting to 10.16.19. 177

Updat e RedBoot non-vol atile configuration - are you sure (y/n)? vy
Unl ock from 0x507c0000- 0x507e0000:
Erase from 0x507c0000- 0x507e0000: .
Program from 0x0000a8d0- 0x0000acd0 at 0x507c0000
Lock from 0x507c0000- 0x507e0000:

33

RedBoot >

Additionally, nicknames can be used like aliases via the format % {nickname}. This allows the
values stored by f conf i g to be used directly by scripts and commands.

Depending on how your terminal program is connected and its capabilities, you might find that
you are unable to use line-editing to delete the ‘old’ value when using the default behaviour of
fconfi g ni cknane orjust plain f confi g, as shown in this example:

RedBoot > fco bootp
boot p: fal se_

The user deletes the word “false;” and enters “true” so the display looks like this:

RedBoot > fco bootp

boot p: true

Updat e RedBoot non-volatile configuration - are you sure (y/n)? vy
Unl ock from. ..

RedBoot > _

To edit when you cannot backspace, use the optional flag - d (for “dumb terminal”) to provide a
simpler interface thus:

RedBoot > fco -d bootp
bootp: false ? _

and you enter the value in the obvious manner thus:

RedBoot > fco -d bootp

boot p: false ? true

Updat e RedBoot non-volatile configuration - are you sure (y/n)? vy
Unl ock from. ..

RedBoot > _

One item which is always present in the configuration data is the ability to execute a script at boot
time. A sequence of RedBoot commands can be entered which will be executed when the system
starts up. Optionally, a time-out period can be provided which allows the user to abort the startup
script and proceed with normal command processing from the console.

RedBoot > fconfig -I

Run script at boot: false

Use BOOTP for network configuration: false
Local I P address: 192.168.1.29

Default server |P address: 192.168.1.101
DNS server |P address: 192.168.1.1

GDB connection port: 9000

Net wor k debug at boot tine: false

The following example sets a boot script and then shows it running.

RedBoot > fconfig
Run script at boot: false t
Boot script:
Enter script, terminate with enpty line
>> fi |i
Boot script tineout: 0 10
Use BOOTP for network configuration: false .
Updat e RedBoot non-vol atile configuration - are you sure (y/n)? vy
Erase from OxaOf c0000- OxaOf e0000: .
... Program from 0x8c021f 60- 0x8c022360 at 0OxaOf c0000:
RedBoot >
RedBoot (tm) debug environnment - built 08:22:24, Aug 23 2000

34

Copyright (C 2000, Red Hat, Inc.

RAM 0x8c000000- 0x8c800000

flash: 0xa0000000 - 0xal000000, 128 bl ocks of 0x00020000 bytes ea.
Socket Conmuni cations, Inc: Low Power Ethernet CF Revision C\

5V/ 3.3V 08/27/98 I P: 192.168.1.29, Default server: 192.168.1.101 \
== Executing boot script in 10 seconds - enter "C to abort

RedBoot > fi i
Nare flash addr Mem addr Length Entry point
RedBoot 0xA0000000 0xA0000000 0x020000 0x80000000

RedBoot [backup] 0xA0020000 0x8C010000 0x020000 0x8C010000
RedBoot config 0OxAOQFC0000 OxAOFCO000 0x020000 0x00000000
FIS directory OxAOFEO0000 OxAOFEO000 0x020000 0x00000000
RedBoot >

NOTE

The bold characters above indicate where something was entered on the console. As you can
see,thefi | i command at the end came from the script, not the console. Once the script is
executed, command processing reverts to the console.

NOTE

RedBoot supports the notion of a boot script timeout, 1.e. a period of time that RedBoot waits
before executing the boot time script. This period is primarily to allow the possibility of can-
celling the script. Since a timeout value of zero (0) seconds would never allow the script to
be aborted or cancelled, this value is not allowed. If the timeout value is zero, then RedBoot
will abort the script execution immediately.

On many targets, RedBoot may be configured to run from ROM or it may be configured to run
from RAM. Other configurations are also possible. All RedBoot configurations will execute the
boot script, but in certain cases it may be desirable to limit the execution of certain script commands
to one RedBoot configuration or the other. This can be accomplished by prepending { <st ar t up
t ype>} to the commands which should be executed only by the RedBoot configured for the spec-
ified startup type. The following boot script illustrates this concept by having the ROM based
RedBoot load and run the RAM based RedBoot. The RAM based RedBoot will then list flash im-
ages.

RedBoot > fco

Run script at boot: false t

Boot script:

Enter script, terminate with enpty line

>> {ROMfis | oad RedBoot [backup]

>> {ROM go

>> {RAMfis i

>>

Boot script tineout (1000ns resolution): 2
Use BOOTP for network configuration: false

Updat e RedBoot non-volatile configuration - are you sure (y/n)? vy

Unl ock from 0x007c0000- 0x007e0000:
Erase from 0x007c0000- 0x007e0000:

35

Pr ogram from 0xa0015030- 0xa0016030 at 0x007df 000:
Lock from 0x007c0000- 0x007e0000:

RedBoot > reset

... Resetting.

+Et hernet et hO: MAC address 00: 80: 4d: 46: 01: 05

I P: 192.168.1.153, Default server: 192.168.1.10

[ROM
built 17:37:36, Aug 14 2001

RedBoot (tm bootstrap and debug environnent
Red Hat certified release, version RL. xx -

Pl at f orm
Copyri ght

1 @B0310 (XScal €)

(© 2000, 2001, Red Hat, Inc.

RAM 0xa0000000- 0xa2000000, 0xa001b088-0xalf df 000 avail abl e

FLASH: 0x00000000 - 0x00800000, 64 bl ocks of 0x00020000 bytes each.
Executing boot script in 2.000 seconds - enter "C to abort
RedBoot > fis | oad RedBoot [backup]

RedBoot > go

+Et hernet et h0O: MAC address 00: 80: 4d: 46: 01: 05

| P: 192.168.1.153, Default server: 192.168.1.10

RedBoot (tm bootstrap and debug environnent
Red Hat certified rel ease, version Rl.xx -

[RAM
bui It 13:03:47, Aug 14 2001

Platform |@0310 (XScal e)
Copyright (C 2000, 2001, Red Hat, Inc.

RAM 0xa0000000- 0xa2000000, 0xa0057f e8- Oxalf df 000 avail abl e

FLASH. 0x00000000 - 0x00800000, 64 bl ocks of 0x00020000 bytes each.
Executing boot script in 2.000 seconds - enter "C to abort
RedBoot> fis |i

Narre FLASH addr Mem addr Lengt h Entry point
RedBoot 0x00000000 0x00000000 0x00040000 0x00002000
RedBoot [backup] 0x00040000 0xA0020000 0x00040000 0xA0020040
RedBoot config 0x007DF000 0x007DFO00 0x00001000 0x00000000
FIS directory 0x007E0000 0x007E0000 0x00020000 0x00000000

RedBoot >

2.6 Executing Programs from RedBoot

Once an image has been loaded into memory, either via the | oad command or the fi s | oad
command, execution may be transfered to that image.

NOTE

The image is assumed to be a stand-alone entity, as RedBoot gives the entire platform over to
it. Typical examples would be an eCos application or a Linux kernel.

go - Execute a program
The format of the go command is:
[-c] [-n]

RedBoot > go [-w tine] [l ocation]

36

Execution will begin at | ocat i on if specified. Otherwise, the entry point of the last image
loaded will be used.

The - woption gives the user t i me seconds before execution begins. The execution may be
aborted by typing Ctrl+C on the console. This mode would typically be used in startup scripts.

The - C option is used to allow execution with caches enabled. Normally, the g0 command
will disable caches before execution.

The - n option is only available when RedBoot supports a network device. It causes the net-
work interface to be disabled before execution begins.

exec - Execute a Linux kernel image

% NOTE

This command is not available for all platforms. Its availability is indicated in specific
platform information in Chapter 5.

Arguments

-w tineout]

-b <load addr> [-] <l ength]]

<randi sk addr>

<randi sk | engt h>]]

"kernel conmand |ine"] [<entry_point>]

— — — — —
'

1 1
o wn =

This command is used to execute a non-eCos application, typically a Linux kernel. Additional
information may be passed to the kernel at startup time. This command is quite special (and
unique from the go’ command) in that the program being executed may expect certain envi-
ronmental setups, for example that the MMU is turned off, etc.

The Linux kernel expects to have been loaded to a particular memory location (0xC0008000
in the case of the SA1110). Since this memory is used by RedBoot internally, it is not possible
to load the kernel to that location directly. Thus the requirement for the "-b" option which tells
the command where the kernel has been loaded. When the exec command runs, the image will

be relocated to the appropriate location before being started. The "-r" and "-s" options are used
to pass information to the kernel about where a statically loaded ramdisk (initrd) is located.

The "-c" option can be used to pass textual "command line" information to the kernel. If the
command line data contains any puncuation (spaces, etc), then it must be quoted using the
double-quote character °"’. If the quote character is required, it should be written as *\"’.

37

3 Rebuilding RedBoot

3.1 Introduction

In normal circumstances it is only necessary to rebuild RedBoot if it has been modified, for exam-
ple if you have extended the command set or applied patches. See the Getting Started with eCos
document, which provides information about the portability and extendability of RedBoot in an
eCos environment.

Most platform HALSs provide configuration export files. Before proceding with the following pro-
cedures, check “Configuration export files”, Section 3.1.1 first, which may simplify the process for
your platform.

RedBoot is configured and built using configuration technology based on Configuration Descrip-
tion Language (CDL). The detailed instructions for building the command-line tool ecosconf i g
on Linux can be found in host'README. For example:

nkdi r $TEMP/ r edboot - bui | d

cd $TEMP/ r edboot - bui | d

$ECOSDI R/ host/ configure --prefix=$TEMP/ redboot-build --w th-tcl=/usr
make

The simplest version of RedBoot can be built by setting the environment variable ECOS_REPOS-
ITORY to point at the eCos/RedBoot source tree, and then typing:
ecosconfig new TARGET redboot

ecosconfig tree
make

where TARGET is the eCos name for the desired platform, for example assabet. You will need to
have set the environment variable ECOS_REPOSITORY to point at the eCos/RedBoot source tree.
Values of TARGET for each board are given in the specific installation details for each board in
Chapter 5, Installation and Testing.

The above command sequence would build a very simple version of RedBoot, and would not in-
clude, for example, networking, FLASH or Compact Flash Ethernet support on targets that sup-
ported those. Such features could be included with the following commands:

ecosconfig new TARGET redboot

ecosconfig add fl ash

ecosconfig add pcntia net_drivers cf_eth_drivers

ecosconfig tree
make

In practice, most platform HALs include configuration export files, described in Section 3.1.1, to
ensure that the correct configuration of RedBoot has been chosen to avoid needing to worry about
which extra packages to add.

The above commands would build a version of RedBoot suitable for testing. In particular, the
result will run from RAM. Since RedBoot normally needs to be installed in ROM/flash, type the
following:

cat >RedBoot ROM ecm <<EOF

cdl _conponent CYG HAL_STARTUP {
user _val ue ROM

38

1

ECF

ecosconfig i mport RedBoot ROM ecm
ecosconfig tree

nmeke

This set of commands will adjust the configuration to be ROM oriented.

Each of these command sequences creates multiple versions of RedBoot in different file formats.
The choice of which file to use will depend upon the actual target hardware and the tools available
for programming ROM/flash. The files produced (typically) are:

install/bin/redboot. el f This isthe complete version of RedBoot, represented in ELF
format. It is most useful for testing with tools such as embedded ICE, or other debug tools.

i nstall/bin/redboot. srec This version has been converted to Motorola S-record format.

i nstall/bin/redboot. bi n This version has been flattened; that is, all formatting informa-
tion removed and just the raw image which needs to be placed in ROM/flash remains.

The details of putting the RedBoot code into ROM/flash are target specific. Once complete, the
system should come up with the RedBoot prompt. For example, the version built using the com-
mands above looks like:

RedBoot (tm) debug environnent [ROM

Red Hat certified release, version RlL.xx - built 07:54:25, Cct 16 2000

Pl atform Assabet devel opnent system (StrongARM 1110)

Copyright (C) 2000, Red Hat, Inc.

RAM 0x00000000- 0x02000000

flash: 0x50000000 - 0x50400000, 32 bl ocks of 0x00020000 bytes ea.

Socket Communi cations, Inc: Low Power Ethernet CF Revision C

5V/ 3.3V 08/ 27/ 98

IP. 192.168.1.29, Default server: 192.168.1.101
RedBoot >

3.1.1 Configuration export files

To help with rebuilding RedBoot from source, some platforms HALs provide configuration export
files. First locate the configuration export files for your platform in the eCos source repository. The
RAM and ROM startup configuration exports can usually be found in a directory named "misc" in
the platform HAL in the eCos source repository, named:

1432 Feb 1 13:27 misc/redboot RAM ecm
1487 Feb 1 14:38 nisc/redboot ROM ecm

All dates and sizes are just examples.

3.1.1.1 Making RedBoot for RAM startup
Throughout the following instructions, several environmental variables are referred to:
$REDBOOTDIR

Full path to the toplevel RedBoot source release.
$BUILDDIR

Full path to where RedBoot will be built, e.g. r edboot . RAM

39

$ECOS_REPOSITORY

Full path to the RedBoot package source. Typically, this should be $REDBOOTDIR/ packages.
$TARGET

e.g.atlas mips32 4kc.
$ARCH_DIR

The directory for the architecture, e.g. mips.
$PLATFORM_DIR

The directory for the platform, e.g. atlas.
$VERSION

The version of the release, e.g. current.

You must make sure these variables are correctly set in your environment before proceeding, or the
build will fail. The values for $TARGET, $ARCH_DIR and $PLATFORM_DIR for each board are given in
the specific installation details for each board in Chapter 5, Installation and Testing. The value for
$VERSION is the name of the package subdirectories - usually ’current’ for sources checked out of
CVS, or something like vX Y’ for a regular X.Y release.

With the environment variables set, use the following sequence of commands to build a RedBoot
image suitable for loading into RAM:
nmkdi r $BUI LDDI R
cd $BU LDDI R
ecosconfi g new $TARCET redboot
ecosconfig inmport \
${ ECOS_REPCS| TORY}/ hal / ${ ARCH DI R}/ ${ PLATFORM DI R}/ ${ VERSI ON} / i sc/ r edboot _RAM ecm

ecosconfig tree
nmeke

To build a ROM or ROMRAM version, in a different build/config directory, just use the configu-
ration export file r edboot _ROM ecmor r edboot _ ROVRAM ecminstead.

The resulting files will be, in each of the ROM, ROMRAM and RAM startup build places:

$BUI LDDI R/ i nstal | / bi n/ redboot . bin
$BUI LDDI R/ i nstal | / bi n/redboot . el f
$BUI LDDI R/ i nst al | / bi n/ redboot . i ng
$BUI LDDI R/i nst al | / bi n/ redboot . srec

Some targets may have variations, or extra files generated in addition.

3.1.2 Platform specific instructions

The platform specific information in Chapter 5, Installation and Testing should be consulted, as
there may be other special instructions required to build RedBoot for particular boards.

40

4 Updating RedBoot

4.1 Introduction

RedBoot normally runs from flash or ROM (in both cases, it is termed a ROM-startup configuration
of RedBoot). In the case of flash, it is possible to update RedBoot, that is, replace it with a newer
version, in situ. This process is complicated by the fact that RedBoot is running from the very flash
which is being updated. The following is an outline of the steps needed for updating RedBoot:

» Start RedBoot, running from flash.

* Load and start a different version of RedBoot, running from RAM.

» Update the primary RedBoot flash image.

» Reboot; run RedBoot from flash.

In order to execute this process, two versions of RedBoot are required; one which runs from flash,
and a separate one which runs solely from RAM. Both of these images are typically provided as part

of the RedBoot package, but they may also be rebuilt from source using the instructions provided
for the platform.

On some platforms, RedBoot runs in a ROMRAM-startup configuration: RedBoot is stored in the
flash or ROM, but when the board is reset, it is copied to RAM and executes from there. For these
platforms where RedBoot is in flash, the update in-situ process is simplified since the ROMRAM-
startup configuration of RedBoot can update the flash content. The update procedure becomes:

+ Start ROMRAM RedBoot, running from RAM.

» Update the primary RedBoot flash image.

* Reboot; run the new ROMRAM RedBoot from ram.

In order to execute this process, only one version of RedBoot is required; a ROMRAM-startup

configuration. This image is typically provided as part of the RedBoot package, but it may also be
rebuilt from source using the instructions provided for the platform.

The following is a more detailed look at these steps. For this process, it is assumed that the target
is connected to a host system and that there is some sort of serial connection used for the RedBoot
CLI. For platforms with a ROMRAM-startup configuration of RedBoot, skip to Section 4.1.3.

4.1.1 Start RedBoot, Running from flash

To start RedBoot, reset the platform.

4.1.2 Load and start a different version of RedBoot, running from
RAM

There are a number of choices here. The basic case is where the RAM based version has been
stored in the FIS (flash Image System). To load and execute this version, use the commands:

RedBoot > fis | oad RedBoot [backup]
RedBoot > go

41

If this image is not available, or does not work, then an alternate RAM based image must be loaded.
Using the load command:

RedBoot > | oad redboot RAM srec
RedBoot > go

NOTE

The details of how to load are installation specific. The file must be placed somewhere the host
computer can provide it to the target RedBoot system. Either TFTP (shown) or X/Ymodem
can be used to download the image into RAM.

Once the image is loaded into RAM, it may be used to update the secondary RedBoot image in
flash using the FIS commands. Some platforms support locking (write protecting) certain regions
of the flash, while others do not. If your platform does not support the lock/unlock commands,
simply ignore these steps. Again, the details of these commands (in particular the numeric values)
differ on each target platform, but the ideas are the same:

RedBoot > fis unlock -f <flash addr> -1 <flash | ength>

RedBoot > fis create RedBoot[backup] -f <flash addr> -b <flash source>
-r <inmage addr> -1 <flash | ength>

RedBoot > fis lock -f <flash addr> -1 <flash | ength>

4.1.3 Update the primary RedBoot flash image

At this point, a version of RedBoot is running on the target, in RAM.
Using the | oad command, download the new flash based version from the host.

Since the flash version is designed to load and run from flash, the image must be relocated into
some suitable, available, RAM location. The details of this are target platform specific (found in
the target appendix), but the command will look something like this:

RedBoot > | oad redboot ROM srec -b <flash source>

This command loads the flash image into RAM at f | ash_sour ce, using the TFTP protocol via
a network connection. Other options are available, refer to the command section on | oad for more
details.

Once the image is loaded into RAM, it must be placed into flash using the FIS commands. Some
platforms support locking (write protecting) certain regions of the flash, while others do not. If
your platform does not support the lock/unlock commands, simply ignore these steps. Again, the
details of these commands (in particular the numeric values) differ on each target platform, but the
ideas are the same:

RedBoot > fis unlock -f <flash addr> -1 <flash | ength>

RedBoot > fis create RedBoot -f <flash addr> -b <flash source> -1 <flash |ength>
-s <data | engt h>

RedBoot > fis lock -f <flash addr> -I <flash addr>

42

A NLLTN

NOTE

RedBoot will display a number of lines of information as it executes these commands. Also,
the size (-s) value for the create operation should be determined from the output provided as
part of the file download step.

It is not required, but it does allow for improved image validity checking in the form of an
image checksum.

% NOTE

After the flash image directory has been initialized with the f i S i ni t command it is possi-
ble to use a shorthand version of the fi S cr eat e command since it can get the necessary
information from the flash image directory:

RedBoot > fis create RedBoot -b <flash source>

4.1.4 Reboot; run RedBoot from flash

Once the image has been successfully written into the flash, simply reboot the target and the new
version of RedBoot will be running.

When installing RedBoot for the first time, or after updating to a newer RedBoot with different con-
figuration keys, it is necessary to update the configuration directory in the flash using the f conf i g
-1 command.

% NOTE

There may be times when RedBoot does not exist on the hardware, thus making step 1 im-
possible to do. In these cases, it should be possible to get to step 2 by using GDB. If this is
possible, the appropriate steps are provided with the target documentation.

43

5 Installation and Testing

5.1 Cyclone 1Q80310
5.1.1 Overview

RedBoot supports both serial ports and the built-in ethernet port for communication and downloads.
The default serial port settings are 115200,8,N,1. RedBoot also supports flash management for the
onboard 8MB flash. Several basic RedBoot configurations are supported:

* RedBoot running from the board’s flash boot sector.

* RedBoot running from flash address 0x40000, with ARM bootloader in flash boot sector.
* RedBoot running from RAM with RedBoot in the flash boot sector.

* RedBoot running from RAM with ARM bootloader in flash boot sector.

A special RedBoot command: di ag is used to access a set of hardware diagnostics provided by
the board manufacturer.

5.1.2 Initial Installation Method

The board manufacturer provides a DOS application which is capable of programming the flash
over the PCI bus, and this is required for initial installations of RedBoot. Please see the board
manual for information on using this utility. In general, the process involves programming one of
the two flash based RedBoot configurations to flash. The RedBoot which runs from the flash boot
sector should be programmed to flash address 0x00000000. RedBoot that has been configured to
be started by the ARM bootloader should be programmed to flash address 0x00004000.

Four sets of prebuilt files are provided in a tarball and zip format. Each set corresponds to one
of the four supported configurations and includes an ELF file (.elf), a binary image (.bin), and an
S-record file (.srec).

For RedBoot running fromthe flash boot sector:
bi ns/ cycl one-rom bi n

bi ns/ cycl one-rom el f

bi ns/ cycl one-rom srec

For RedBoot running from flash address 0x40000:
bi ns/ cycl one-roma. bin

bi ns/ cycl one-roma. el f

bi ns/ cycl one-roma. srec

For RedBoot running from RAM with RedBoot in the flash boot sector:
bi ns/ cycl one-ram bi n

bi ns/ cycl one-ram el f

bi ns/ cycl one-ram srec

For RedBoot running from RAM with ARM boot | oader in the flash boot sector:
bi ns/ cycl one-rama. bin

bi ns/ cycl one-rama. el f

bi ns/ cycl one-rana. srec

44

Initial installations deal with the flash-based RedBoots. Installation and use of RAM based Red-
Boots is documented elsewhere.

To install RedBoot to run from the flash boot sector, use the manufacturer’s flash utility to install
the bins/cyclone-rom.bin image at address zero.

To install RedBoot to run from address 0x40000 with the ARM bootloader in the flash boot sector,
use the manufacturer’s flash utility to install the bins/cyclone-roma.bin image at address 0x40000.

After booting the initial installation of RedBoot, this warning may be printed:

flash configuration checksumerror or invalid key

This is normal, and indicates that the flash must be configured for use by RedBoot. Even if the
above message is not printed, it may be a good idea to reinitialize the flash anyway. Do this with
the f i S command:

RedBoot > fis init
About to initialize [format] flash inage system - are you sure (y/n)? vy
*** |nitialize flash | nage System
War ni ng: device contents not erased, sone bl ocks may not be usable
Unl ock from 0x007e0000- 0x00800000:
Erase from 0x007e0000- 0x00800000: .
Program from Oxalf dO0O00- Oxalf d0400 at 0x007e0000:
... Lock from 0x007e0000- 0x00800000:
Fol | owed by the fconfig command:
RedBoot > fconfig
Run script at boot: false
Use BOOTP for network configuration: false
Local |P address: 192.168.1.153
Default server |P address: 192.168.1.10
GDB connection port: 1000
Net wor k debug at boot tine: false
Updat e RedBoot non-volatile configuration - are you sure (y/n)? vy
... Unl ock from 0x007c0000-0x007e0000:
Erase from 0x007c0000- 0x007e0000: .
Program from 0xa0013018- 0xa0013418 at 0x007c0000:
Lock from 0x007c0000- 0x007e0000:

5.1.3 Error codes

RedBoot uses the two digit LED display to indicate errors during board initialization. Possible
error codes are:

88 - Unknown Error

55 - 12C Error

FF - SDRAM Error
01 - No Error

5.1.4 Using RedBoot with ARM Bootloader

RedBoot can coexist with ARM tools in flash on the IQ80310 board. In this configuration, the ARM
bootloader will occupy the flash boot sector while RedBoot is located at flash address 0x40000.
The sixteen position rotary switch is used to tell the ARM bootloader to jump to the RedBoot image
located at address 0x40000. RedBoot is selected by switch position 0 or 1. Other switch positions
are used by the ARM firmware and RedBoot will not be started.

45

5.1.5 Flash management

5.1.5.1 Updating the primary RedBoot image

To update the primary RedBoot images, follow the procedures detailed in Section 4.1.3, but the
actual numbers used with the flags in the sample commands should be:

ARM bootloader in flash boot sector

-f 0x40000
-b 0xa0100000
-1 0x40000

RedBoot in flash boot sector

-f 0
-b 0xa0100000
-1 0x40000

5.1.5.2 Updating the secondary RedBoot image

ARM bootloader in flash boot sector

-f 0x80000
-b 0xa0020000
-r 0xa0020000
-1 0x40000

RedBoot in flash boot sector

-f 0x40000
-b 0xa0020000
-r 0xa0020000
-1 0x40000

5.1.6 Special RedBoot Commands

A special RedBoot command, diag, is used to access a set of hardware diagnostics provided by the
board manufacturer. To access the diagnostic menu, enter diag at the RedBoot prompt:

RedBoot > di ag

Enteri ng Hardware Di agnostics - Disabling Data Cache!
1 - Menory Tests

- Repeating Menory Tests

- 16C552 DUART Serial Port Tests

- Rotary Switch S1 Test for positions 0-3
- seven Segment LED Tests

- Backpl ane Detection Test

- Battery Status Test

- External Tiner Test

- 182559 Ethernet Configuration

10 - 82559 Ethernet Test

11 - Secondary PCI Bus Test

12 - Primary PCl Bus Test

13 - 1960Rx/303 PCl Interrupt Test

14 - Internal Tinmer Test

OCO~NOOUTR_WN

46

15 - GPI O Test
0 - quit Enter the nenu itemnnunber (0 to quit):

Tests for various hardware subsystems are provided, and some tests require special hardware in
order to execute normally. The Ethernet Configuration item may be used to set the board ethernet
address.

5.1.7 1Q80310 Hardware Tests

- Menory Tests

- Repeating Menory Tests

- 16C552 DUART Serial Port Tests

- Rotary Switch S1 Test for positions 0-3
7 Segnment LED Tests

- Backpl ane Detection Test

- Battery Status Test

- External Tiner Test

- 182559 Ethernet Configuration

10 - 82559 Ethernet Test

11 - i960Rx/303 PCl Interrupt Test

12 - Internal Tinmer Test

13 - Secondary PCI Bus Test

14 - Primary PCl Bus Test

15 - Battery Backup SDRAM Menory Test
16 - GPIO Test

17 - Repeat-On-Fail Menory Test

18 - Coyonosa Cache Loop (No return)
19 - Show Software and Hardware Revi sion
0 - quit

Enter the nenu item nunber (0 to quit):

OCO~NOUTAWNPE
'

Tests for various hardware subsystems are provided, and some tests require special hardware in
order to execute normally. The Ethernet Configuration item may be used to set the board ethernet
address.

5.1.8 Rebuilding RedBoot

The build process is nearly identical for the four supported configurations. Assuming that the pro-
vided RedBoot source tree is located in the current directory and that we want to build a RedBoot
that runs from the flash boot sector, the build process is:

% export TOPDI R=' pwd’
% export ECOS_REPCSI TORY=\
${TOPDI R}/ src/ ecos- noni t or s/ r edboot - DATE- i nt el / packages

% nmkdir ${TOPDI R}/ buil d
% cd ${TOPDI R}/ bui | d
% ecosconfig new i q80310 redboot
% ecosconfig inmport \

${ ECOS_REPOCSI TORY}/ hal / ar n1 i 80310/ VERSI ON/ mi sc/ r edboot _ROM ecm
% ecosconfig tree
% make

If a different configuration is desired, simply use the above build process but substitute an alternate
configuration file for the ecosconfig import command, e.g.:

For a RedBoot that runs from flash address 0x40000 with the ARM booloader in the flash boot
sector, use:

47

% ecosconfig inmport \
${ ECOS_REPOSI TORY}/ hal / ar ml i 80310/ VERSI ON/ i sc/ r edboot _ROVA. ecm

For a RedBoot which runs from RAM with RedBoot located in the flash boot sector, use:

% ecosconfig inmport \
${ ECOS_REPCSI TORY}/ hal / ar mi i q80310/ VERSI ON mi sc/ r edboot _RAM ecm

For a RedBoot which runs from RAM with ARM bootloader located in the flash boot sector, use:

% ecosconfig inmport \
${ ECOS_REPOSI TORY}/ hal / ar ml i 80310/ VERSI ON/ mi sc/ r edboot _RAMA. ecm

5.1.9 Interrupts

RedBoot uses an interrupt vector table which is located at address 0xAOOOA004. Entries in this
table are pointers to functions with this protoype::

int irg_handl er(unsigned vector, unsigned data)

On an IQ80310 board, the vector argument is one of 49 interrupts defined in
hal /arm i 80310/ current/i nclude/ hal _platformints.h::

/[*** 80200 CPU ***

#defi ne CYGNUM HAL_| NTERRUPT_r eser vedO
#def i ne CYGNUM_HAL_I NTERRUPT_PMJ_PMNO_OVFL
#def i ne CYGNUM_HAL_I NTERRUPT_PMJ_PMN1_OVFL
#defi ne CYGNUM_HAL_I NTERRUPT_PMJ_CCNT_OVFL
#defi ne CYGNUM_HAL_I| NTERRUPT_BCU_I NTERRUPT
#defi ne CYGNUM_HAL_I NTERRUPT_NI RQ

#defi ne CYGNUM_HAL_I NTERRUPT_NFI Q

/! See Ch.12 - Performance Mon.
/1 PMJ counter 0/1 overfl ow
PMJU cl ock overfl ow

/'l See Ch.11 - Bus Control Unit
/1 external |IRQ

/1 external FIQ

O WNEFO
-~
-

[*** XINT6 interrupts ***

#defi ne CYGNUM HAL_| NTERRUPT_DMA 0 7

#defi ne CYGNUM HAL_| NTERRUPT_DMA 1 8

#defi ne CYGNUM HAL_| NTERRUPT_DMA 2 9

#defi ne CYGNUM HAL | NTERRUPT_GTSC 10 // dobal Time Stanp Counter
#defi ne CYGNUM HAL_| NTERRUPT_PEC 11 // Performance Event Counter
#defi ne CYGNUM HAL_| NTERRUPT_AAI P 12 // application accelerator unit
[l *** XINT7 interrupts ***

/1 12Cinterrupts

#define CYGNUM HAL_| NTERRUPT_I 2C_TX _EMPTY 13

#define CYGNUM HAL_| NTERRUPT_I 2C RX FULL 14

#define CYGNUM HAL_| NTERRUPT_I 2C BUS_ERR 15

#defi ne CYGNUM HAL_| NTERRUPT_I 2C_STCP 16

#define CYGNUM HAL_| NTERRUPT_I 2C_LGSS 17

#defi ne CYGNUM HAL_| NTERRUPT_| 2C_ADDRESS 18

/1 Messaging Unit interrupts

#defi ne CYGNUM HAL_| NTERRUPT MESSAGE 0 19
#def i ne CYGNUM HAL_| NTERRUPT_MESSAGE_1 20
#def i ne CYGNUM HAL_| NTERRUPT _DOORBELL 21
#def i ne CYGNUM HAL_| NTERRUPT_NM _ DOORBELL 22
#def i ne CYGNUM HAL_| NTERRUPT_QUEUE_POST 23
#def i ne CYGNUM HAL_| NTERRUPT_OUTBOUND QUEUE_FULL 24
#def i ne CYGNUM HAL_I NTERRUPT_| NDEX_REG STER 25

// PClI Address Translation Unit

48

#defi ne CYGNUM HAL_| NTERRUPT_BI ST 26

/1 *** External board interrupts (XINT3) ***

#defi ne CYGNUM HAL | NTERRUPT_TI MER 27 ||l external tinmer
#defi ne CYGNUM HAL_| NTERRUPT_ETHERNET 28 // onboard enet
#defi ne CYGNUM HAL_| NTERRUPT_SERI AL_A 29 /] 16x50 uart A
#defi ne CYGNUM HAL_| NTERRUPT_SERI AL_B 30 // 16x50 uart B

#define CYGNUM HAL_ | NTERRUPT_PCI _S INTD 31 // secondary PCl | NTD
/1 The hardware doesn’t (yet?) provide masking or status for these
/1 even though they can trigger cpu interrupts. I1SRs will need to

/1 poll the device to see if the device actually triggered the

/1 interrupt.

#define CYGNUM HAL | NTERRUPT_PCI _S INTC 32 // secondary PCl |INTC
#defi ne CYGNUM HAL_I NTERRUPT_PCI _S INTB 33 // secondary PCl |NTB
#define CYGNUM HAL_I NTERRUPT_PCI _S INTA 34 // secondary PCl | NTA

/1 *** NM Interrupts go to FIQ ***

#def i ne CYGNUM HAL_| NTERRUPT_MCU_ERR 35
#defi ne CYGNUM HAL_ | NTERRUPT PATU_ERR 36
#defi ne CYGNUM HAL_| NTERRUPT _SATU_ERR 37
#def i ne CYGNUM HAL_| NTERRUPT_PBDG_ERR 38
#def i ne CYGNUM HAL_| NTERRUPT_SBDG_ERR 39
#defi ne CYGNUM HAL_ | NTERRUPT_DMAO_ERR 40
#defi ne CYGNUM HAL_ | NTERRUPT _DMAL_ERR 41
#def i ne CYGNUM HAL_| NTERRUPT_DMA2_ERR 42
#def i ne CYGNUM HAL_| NTERRUPT_MJ_ERR 43
#defi ne CYGNUM HAL_| NTERRUPT _r eserved52 44
#defi ne CYGNUM HAL_| NTERRUPT_AAU ERR 45
#def i ne CYGNUM HAL_| NTERRUPT_BI U_ERR 46

/1 *** ATU FI Q sources ***
#def i ne CYGNUM HAL_| NTERRUPT_P_SERR 47
#def i ne CYGNUM HAL_| NTERRUPT_S_SERR 48

The data passed to the ISR is pulled from a data table (hal _i nt errupt _dat a) which im-
mediately follows the interrupt vector table. With 49 interrupts, the data table starts at address

0xA000AO0CS.

An application may create a normal C function with the above prototype to be an ISR. Just poke
its address into the table at the correct index and enable the interrupt at its source. The return value

of the ISR 1is ignored by RedBoot.

5.1.10 Memory Maps

The first level page table is located at 0xa0004000. Two second level tables are also used. One
second level table is located at 0xa0008000 and maps the first IMB of flash. The other second

level table is at 0xa0008400, and maps the first IMB of SDRAM.

NOTE

The virtual memory maps in this section use a C and B column to indicate whether or not the

region is cached (C) or buffered (B).

49

Physi cal

0x00000000 0x00000f f f flash Menory

0x00001000 0x00001ff f 80312 Internal Registers
0x00002000 - OxO007fffff flash Menory

0x00800000 - Ox7fffffff PCl ATU CQut bound Direct W ndow
0x80000000 Ox83ffffff Primary PCl 32-bit Menory
0x84000000 Ox87ffffff Primary PCl 64-bit Menory
0x88000000 Ox8bffffff Secondary PCI 32-bit Menory
0x8c¢000000 Ox8fffffff Secondary PCl 64-bit Menory
0x90000000 0x9000f ff f Primary PCl | O Space
0x90010000 0x9001ffff Secondary PCl | O Space
0x90020000 - OxOfffffff Unused

0xa0000000 - Oxbfffffff SDRAM

0xc0000000 Oxefffffff Unused

0xf 0000000 Oxffffffff 80200 Internal Registers

Vi rtual Address Range C B Description

0x00000000 - 0x00000fff Y Y SDRAM

0x00001000 0x00001fff N N 80312 Internal Registers
0x00002000 ox007fffff Y N flash Menory

0x00800000 ox7fffffff N N PCl ATU Qutbound Direct W ndow
0x80000000 - Ox83ffffff NN Primary PCl 32-bit Menory
0x84000000 ox87ffffff NN Primary PCl 64-bit Menory
0x88000000 Ox8bffffff N N Secondary PCl 32-bit Menory
0x8c000000 ox8fffffff N N Secondary PCl 64-bit Menory
0x90000000 0x9000ffff NN Primary PCl | O Space
0x90010000 0x9001ffff N N Secondary PCl |0O Space
0xa0000000 - Oxbfffffff Y Y SDRAM

0xc0000000 Oxcfffffff Y Y Cache Flush Region
0xd0000000 0xdoooofff Y N first 4k page of flash

0xf 0000000 oxffffffff N N 80200 Internal Registers

Addr ess Range

Description

5.1.11 Resource Usage

The standalone flash based RedBoot image (no ARM bootloader) occupies flash addresses

0x00000000 - 0x0003 ftft.

The flash based RedBoot configured to be booted by the ARM bootloader occupies flash addresses
0x00040000 - 0x00071fff. Both of these also reserve RAM (0xa0000000 - 0xa001{ftf) for RedBoot

runtime uses.

Both RAM based RedBoot configurations are designed to run from RAM at addresses 0xa0020000
- 0xa005ftff. RAM addresses from 0xa0060000 to the end of RAM are available for general use,
such as a temporary scratchpad for downloaded images before they are written to flash.

The external timer is used as a polled timer to provide timeout support for networking and XModem

file transfers.

50

5.2 Intel 1Q80321
5.2.1 Overview

RedBoot supports the serial port and the built-in ethernet port for communication and downloads.
The default serial port settings are 115200,8,N,1. RedBoot also supports flash management for the
onboard 8MB flash. Several basic RedBoot configurations are supported:

* RedBoot running from the board’s flash boot sector.
* RedBoot running from RAM with RedBoot in the flash boot sector.

A special RedBoot command: di ag is used to access a set of hardware diagnostics.

5.2.2 Initial Installation Method

The board manufacturer provides a DOS application which is capable of programming the flash
over the PCI bus, and this is required for initial installations of RedBoot. Please see the board
manual for information on using this utility. In general, the process involves programming the
flash based RedBoot to flash. RedBoot should be programmed to flash address 0x00000000 using
the DOS utility.

Two sets of prebuilt files are provided in a tarball and zip format. Each set corresponds to one of
the supported configurations and includes an ELF file (.elf), a binary image (.bin), and an S-record
file (.srec).

For RedBoot running fromthe flash boot sector:

| oaders/iq80321/i q80321-rom bin

| oaders/iq80321/i g80321-romel f
| oaders/iq80321/i q80321-rom srec

For RedBoot running from RAM with RedBoot in the flash boot sector:
| oaders/iq80321/i q80321-ram bin

| oaders/iq80321/i g80321-ramel f

| oaders/iq80321/i q80321-ram srec

Initial installations deal with the flash-based RedBoots. Installation and use of RAM based Red-
Boots is documented elsewhere.

To install RedBoot to run from the flash boot sector, use the manufacturer’s flash utility to install
the | oader s/ i g80321/i gq80321-r om bi n image at address zero.

After booting the initial installation of RedBoot, this warning may be printed:

flash configuration checksumerror or invalid key

This is normal, and indicates that the flash must be configured for use by RedBoot. Even if the
above message 1s not printed, it may be a good idea to reinitialize the flash anyway. Do this with
the f i S command:

RedBoot > fis init

About to initialize [format] FLASH i nage system - are you sure (y/n)? vy

*** |nitialize FLASH | nage System

WAr ni ng: device contents not erased, sonme bl ocks may not be usable
Unl ock from Oxf07e0000- Oxf 0800000:

51

. Erase from Oxf07e0000- Oxf 0800000: .
. Program from 0x01ddf 000- 0x01ddf 400 at Oxf07e0000: .
. Lock from Oxf07e0000- Oxf 0800000: .

5.2.3 Switch Settings

The 80321 board is highly configurable through a number of switches and jumpers. RedBoot makes
some assumptions about board configuration and attention must be paid to these assumptions for
reliable RedBoot operation:

* The onboard ethernet and the secondary slot may be placed in a private space so that they are
not seen by a PC BIOS. If the board is to be used in a PC with BIOS, then the ethernet should
be placed in this private space so that RedBoot and the BIOS do not conflict.

* RedBoot assumes that the board is plugged into a PC with BIOS. This requires RedBoot to
detect when the BIOS has configured the PCI-X secondary bus. If the board is placed in a
backplane, RedBoot will never see the BIOS configure the secondary bus. To prevent this
wait, set switch STE1-3 to ON when using the board in a backplane.

* For the remaining switch settings, the following is a known good configuration:

S1D1 All OFF

S7E1 7 1s ON, all others OFF
S8E1 2,3,5,6 are ON, all others OFF
SS8E2 2,3 are ON, all others OFF
S9E1 3 is ON, all others OFF
S4D1 1,3 are ON, all others OFF
JOE1 2,3 jumpered

JO9F1 2,3 jumpered

J3F1 Nothing jumpered

J3G1 2,3 jumpered

J1G2 2,3 jumpered

5.2.4 LED Codes

RedBoot uses the two digit LED display to indicate status during board initialization. Possible
codes are:

LED Acti ons
Power - On/ Reset

88
Set the CPSR
Enabl e coprocessor access
Drain wite and fill buffer
Setup PBIU chip selects

Al

Enabl e the | cache

52

Move FLASH chip select from Ox0 to OxFO000000
Junp to new FLASH | ocation

A3
Setup and enable the MW
A4
I2C interface initialization
90
Wait for I2Cinitialization to conplete
91
Send address (via 12C) to the DI MM
92
Wait for transmt conplete
93
Read SDRAM PD data from DI MM
94

Read remai nder of EEPROM dat a.
An error will result in one of the follow ng
error codes on the LEDs:

77 BAD EEPROM checksum

55 12C protocol error

FF bank size error

A5
Setup DDR nenory interface
A6
Enabl e branch target buffer
Drain the wite & fill buffers
Fl ush | cache, Dcache and BTB
Flush instuction and data TLBs
Drain the wite & fill buffers
SL
ECC Scrub Loop
SE
A7
Cl ean, drain, flush the main Dcache
A8
Clean, drain, flush the mni Dcache
Fl ush Dcache
Drain the wite & fill buffers
A9
Enabl e ECC
AA
Save SDRAM si ze
Move MWU tabl es into RAM
AB
Cl ean, drain, flush the main Dcache
Clean, drain, flush the mni Dcache
Drain the wite & fill buffers
AC
Set the TTB register to DRAM nmu_t abl e
AD
Set node to | RQ node
A7
Move SW & Undefined "vectors" to RAM (at 0x0)
A6
Switch to supervisor node
A5
Move renmaining "vectors" to RAM (at 0xO0)
Ad

Copy DATA to RAM
Initialize interrupt exception environment
Initialize stack

53

Cl ear BSS section

A3

Call platformspecific hardware initialization
A2

Run through static constructors
Al

Start up the eCos kernel or RedBoot

5.2.5 Flash management

5.2.5.1 Updating the primary RedBoot image

To update the primary RedBoot images, follow the procedures detailed in Section 4.1.3, but the
actual numbers used with the flags in the sample commands should be:

-f 0Oxf 0000000
-b 0x100000
-1 0x40000

5.2.5.2 Updating the secondary RedBoot image

To update the secondary RedBoot image, follow the procedures detailed in Section 4.1.2, but the
actual numbers used with the flags in the sample commands should be:

-f 0xf 0040000
-b 0x20000
-r 0x20000
-1 0x40000

5.2.6 Special RedBoot Commands

A special RedBoot command, diag, is used to access a set of hardware diagnostics. To access the
diagnostic menu, enter diag at the RedBoot prompt:

RedBoot > di ag
Enteri ng Hardware Di agnostics - Disabling Data Cache!

1 @B0321 Hardware Tests

- Menory Tests

- Repeating Menory Tests

- Repeat-On-Fail Menory Tests

- Rotary Switch S1 Test

- 7 Segnent LED Tests

- 182544 Ethernet Configuration
Baterry Status Test

- Battery Backup SDRAM Menory Test
- Timer Test

- PCl Bus test

- CPU Cache Loop (No Return)

- quit

Enter the nenu item nunber (0 to quit):

e
OROCOOVONOUMWNE
\

Tests for various hardware subsystems are provided, and some tests require special hardware in
order to execute normally. The Ethernet Configuration item may be used to set the board ethernet
address.

54

5.2.6.1 Memory Tests

This test is used to test installed DDR SDRAM memory. Five different tests are run over the given
address ranges. If errors are encountered, the test is aborted and information about the failure is
printed. When selected, the user will be prompted to enter the base address of the test range and its
size. The numbers must be in hex with no leading “0x”

Enter the nenu item nunber (0 to quit): 1

Base address of menory to test (in hex): 100000
Size of menory to test (in hex): 200000

Testing nenory from 0x00100000 to OxO002fffff.

Walking 1's test:
0000000100000002000000040000000800000010000000200000004000000080
0000010000000200000004000000080000001000000020000000400000008000
0001000000020000000400000008000000100000002000000040000000800000
0100000002000000040000000800000010000000200000004000000080000000
passed

32-bit address test: passed

32-bit address bar test: passed

8-bit address test: passed

Byt e address bar test: passed

Mermory test done

5.2.6.2 Repeating Memory Tests

The repeating memory tests are exactly the same as the above memory tests, except that the tests
are automatically rerun after completion. The only way out of this test is to reset the board.

5.2.6.3 Repeat-On-Fail Memory Tests

This is similar to the repeating memory tests except that when an error is found, the failing test
continuously retries on the failing address.

5.2.6.4 Rotary Switch S1 Test

This tests the operation of the sixteen position rotary switch. When run, this test will display the
current position of the rotary switch on the LED display. Slowly dial through each position and
confirm reading on LED.

5.2.6.5 7 Segment LED Tests

This tests the operation of the seven segment displays. When run, each LED cycles through 0
through F and a decimal point.

55

5.2.6.6 182544 Ethernet Configuration

This test initializes the ethernet controller’s serial EEPROM if the current contents are invalid. In
any case, this test will also allow the user to enter a six byte ethernet MAC address into the serial
EEPROM.

Enter the nenu item nunmber (0 to quit): 6

Current MAC address: 00:80: 4d: 46: 00: 02
Enter desired MAC address: 00:80: 4d: 46: 00: 01
Witing to the Serial EEPROM .. Done

*x*x*xx%* Reaset The Board To Have Changes Take Effect *****xx*x

5.2.6.7 Battery Status Test

This tests the current status of the battery. First, the test checks to see if the battery is installed and
reports that finding. If the battery is installed, the test further determines whether the battery status
is one or more of the following:

» Battery is charging.
» Battery is fully discharged.
» Battery voltage measures within normal operating range.

5.2.6.8 Battery Backup SDRAM Memory Test

This tests the battery backup of SDRAM memory. This test is a three step process:

1. Select Battery backup test from main diag menu, then write data to SDRAM.
2. Turn off power for 60 seconds, then repower the board.
3. Select Battery backup test from main diag menu, then check data that was written in step 1.

5.2.6.9 Timer Test

This tests the internal timer by printing a number of dots at one second intervals.

5.2.6.10 PCI Bus Test

This tests the secondary PCI-X bus and socket. This test requires that an IQ80310 board be plugged
into the secondary slot of the IOP80321 board. The test assumes at least 32MB of installed memory
on the IQ80310. That memory is mapped into the IOP80321 address space and the memory tests
are run on that memory.

5.2.6.11 CPU Cache Loop

This test puts the CPU into a tight loop run entirely from the ICache. This should prevent all
external bus accesses.

56

5.2.7 Rebuilding RedBoot

The build process is nearly identical for the supported configurations. Assuming that the provided
RedBoot source tree is located in the current directory and that we want to build a RedBoot that
runs from the flash boot sector, the build process is:

% export TOPDI R=' pwd'

% export ECOS_REPCSI TORY=\

${TOPDI R}/ src/ ecos-noni t or s/ r edboot - DATE- i nt el / packages

% mkdi r ${ TOPDI R}/ bui | d

% cd ${TOPDI R}/ bui | d

% ecosconfig new i q80321 redboot

% ecosconfig inmport \

${ ECOS_REPCSI TORY}/ hal / armf xscal e/ i 80321/ VERSI OV mi sc/ r edboot _ROM ecm
% ecosconfig tree
% nake

If a RedBoot that runs from RAM is desired, simply use the above build process but substitute an
alternate configuration file for the ecosconfig import command, e.g.:

% ecosconfig inmport \
${ ECOS_REPOSI TORY}/ hal / ar ml xscal e/ i 80321/ VERSI ON/ mi sc/ r edboot _RAM ecm

5.2.8 Interrupts
RedBoot uses an interrupt vector table which is located at address 0x8004. Entries in this table are
pointers to functions with this protoype::

int irg_handl er(unsigned vector, unsigned data)
On an 1Q80321 board, the vector argument is one of 32 interrupts defined in hal / ar n1 xs-
cal e/ verde/ current/include/hal _var _ints.h::

[l *** 80200 CPU ***

#define CYGNUM HAL_| NTERRUPT DMAO_EOT 0
#define CYGNUM HAL_| NTERRUPT_DVAO_ECC 1
#define CYGNUM HAL_| NTERRUPT_DVAL_EOT 2
#define CYGNUM HAL_| NTERRUPT DMAL_ECC 3
#define CYGNUM HAL_| NTERRUPT_RSVD_4 4
#define CYGNUM HAL_| NTERRUPT_RSVD 5 5
#define CYGNUM HAL_| NTERRUPT_AA_EOT 6
#define CYGNUM HAL_| NTERRUPT AA_ECC 7
#define CYGNUM HAL_| NTERRUPT _CORE_PMON 8
#define CYGNUM HAL_| NTERRUPT_TI MERO 9
#define CYGNUM HAL_| NTERRUPT_TI MERL 10
#define CYGNUM HAL_| NTERRUPT | 2C 0 11
#define CYGNUM HAL_| NTERRUPT | 2C_1 12
#define CYGNUM HAL_| NTERRUPT_MESSAG NG 13
#define CYGNUM HAL_| NTERRUPT_ATU_ BI ST 14
#define CYGNUM HAL_| NTERRUPT PERFMON 15
#define CYGNUM HAL_| NTERRUPT CORE_PMJ 16
#define CYGNUM HAL_| NTERRUPT Bl U_ERR 17
#define CYGNUM HAL_| NTERRUPT_ATU_ERR 18
#define CYGNUM HAL_| NTERRUPT_MCU_ERR 19
#define CYGNUM HAL_| NTERRUPT DMAO_ERR 20
#defi ne CYGNUM HAL_| NTERRUPT_DVAL_ERR 22
#define CYGNUM HAL_| NTERRUPT_AA_ERR 23
#define CYGNUM HAL_| NTERRUPT_MSG ERR 24
#define CYGNUM HAL_| NTERRUPT_SSP 25

57

#defi ne CYGNUM HAL_| NTERRUPT_RSVD 26 26
#def i ne CYGNUM HAL_| NTERRUPT_XI NTO 27
#def i ne CYGNUM HAL_I NTERRUPT_XI NT1 28
#def i ne CYGNUM HAL_| NTERRUPT_XI NT2 29
#defi ne CYGNUM HAL_| NTERRUPT_XI NT3 30
#def i ne CYGNUM_HAL_| NTERRUPT_HPI 31

The data passed to the ISR is pulled from a data table (hal _i nt err upt _dat a) which imme-
diately follows the interrupt vector table. With 32 interrupts, the data table starts at address 0x8084.

An application may create a normal C function with the above prototype to be an ISR. Just poke
its address into the table at the correct index and enable the interrupt at its source. The return value
of the ISR 1is ignored by RedBoot.

5.2.9 Memory Maps

The RAM based page table is located at RAM start + 0x4000. RedBoot may be configured for one
of two memory maps. The difference between them is the location of RAM and the PCI outbound
windows. The alternative memory map may be used when building RedBoot or eCos by using the
RAM_ALTMAP and ROM_ALTMAP startup types in the configuration.

NOTE

The virtual memory maps in this section use a C, B, and X column to indicate the caching
policy for the region..

X C B Description

0 0 0 Uncached/ Unbuffered

0 0 1 Uncached/Buffered

0 1 0 Cached/Buffered Wite Through, Read Allocate
011 Cached/Buffered Wite Back, Read All ocate

100 Invalid -- not used

1 01 Uncached/Buffered No wite buffer coal escing
110 Mni DCache - Policy set by Aux Ctl Register

111 Cached/Buffered Wite Back, Read/ Wite All ocate
Physi cal Address Range Description

0x00000000 Ox7fffffff ATU CQut bound Di rect W ndow
0x80000000 0x900f ffff ATU Qut bound Transl ate W ndows
0xa0000000 Oxbf ffffff SDRAM

0xf 0000000 0xf 0800000 FLASH (PBI U CS0)
0xf e800000 Oxf e800f f f UART (PBI'U CS1)
Oxf e840000 Oxf e840ff f Left 7-segnment LED (PBIU CS3)
Oxf e850000 Oxf e850f f f Ri ght 7-segnent LED (PBI U CS2)
Oxf e8d0000 Oxf e8dOf f f Rotary Switch (PBIU C4)
Oxf e8f 0000 Oxf e8f Of f f Baterry Status (PBIU CS5)
oxf f f 00000 Oxffffffff Verde Menory napped Registers
Default Virtual Map X C B Description

0x00000000 - Ox1fffffff 1 1 1 SDRAM

0x20000000 - Oxofffffff O O O ATU Qutbound Direct W ndow
0xa0000000 - Oxboofffff O O O ATU Qutbound Transl ate W ndows

58

0xc0000000 oxdfffffff O O O Uncached alias for SDRAM
0xe0000000 OxeO0fffff 1 1 1 Cache flush region (no phys nen)
0xf 0000000 - 0xf0800000 O 1 O FLASH (PBI U CS0)
Oxf e800000 - Oxfe800fff O 0 O UART (PBIU Cs1)
Oxf e840000 Oxfe840fff 0 0 O Left 7-segnent LED (PBIU CS3)
Oxf e850000 Oxfe850fff 0O 0 0O Right 7-segnent LED (PBIU CS2)
Oxf e8d0000 Oxfe8dofff O 0O O Rotary Switch (PBIU C4)
Oxf e8f 0000 Oxfe8fOfff O O O Baterry Status (PBI U CS5)
Ooxf f f 00000 oxffffffff O O O Verde Menory nmampped Registers
Alternate Virtual Mp X C B Description

0x00000000 oxoo0offfff 1 1 1 Alias for 1st MB of SDRAM
0x00100000 ox7fffffff O O O ATU Qutbound Direct W ndow
0x80000000 ox900fffff O O O ATU CQutbound Transl ate W ndows
0xa0000000 - Oxbfffffff 1 1 1 SDRAM

0xc0000000 oxdfffffff O O O Uncached alias for SDRAM
0xe0000000 OxeQ0fffff 1 1 1 Cache flush region (no phys nen)
0xf 0000000 - 0Oxf0800000 O 1 0O FLASH (PBI U CS0)
Oxf e800000 - Oxfe800fff O 0 0O UART (PBIU Cs1)
Oxf e840000 Oxfe840fff 0 0 O Left 7-segnent LED (PBIU CS3)
Oxf e850000 Oxfe850fff 0O 0 0O Right 7-segnent LED (PBIU CS2)
Oxf e8d0000 Oxfe8dofff O O O Rotary Switch (PBIU C4)
Oxf e8f 0000 Oxfe8fOfff O O O Baterry Status (PBI U CS5)
Ooxf f f 00000 oxffffffff O O O Verde Menory nmmpped Registers

5.2.10 Resource Usage

The flash based RedBoot image occupies flash addresses 0xf0000000 - 0xf003ffff and RAM ad-
dresses (0x00000000 - 0x0001fftY).

The RAM based RedBoot configuration is designed to run from RAM at addresses 0x00020000 -
0x0005ffff. RAM addresses from 0x00060000 to the end of RAM are available for general use,
such as a temporary scratchpad for downloaded images before they are written to flash.

The Verde programmable timerQ is used for timeout support for networking and XModem file
transfers.

59

5.3 Intel Xscale IXDP425 Network Processor Evaluation Board

5.3.1 Overview

RedBoot supports the builtin high-speed and console UARTs, a PCI based 182559 ethernet card,
and both NPE ethernet ports for communication and downloads. The default serial port settings
are 115200,8,N,1. RedBoot also supports flash management for the 16MB boot flash on the main-
board.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running redboot ROM.ecm
from flash sector.

RAM [RAM] RedBoot running from | redboot RAM.ecm
RAM with RedBoot in
the flash boot sector.

5.3.2 Initial Installation Method

The IXDP425 flash is socketed, so initial installation may be done using an appropriate device
programmer. JTAG based initial may also be used. In either case, the ROM mode RedBoot is
programmed into the boot flash at address 0x00000000.

After booting the initial installation of RedBoot, this warning may be printed:

flash configuration checksumerror or invalid key

This is normal, and indicates that the flash should be configured for use by RedBoot. Even if this
message is not seen, it is recommended that the f conf i g be run to initialize the flash configuration
area. See Section 2.5 for more details.

5.3.3 LED Codes

RedBoot uses the 4 digit LED display to indicate status during board initialization. Possible codes
are:

LED Actions

Power-On/Reset
Set the CPSR
Enable coprocessor access
Drain write and fill buffer
Setup expansion bus chip selects
1001
Enable Icache
1002
Initialize SDRAM controller

60

1003

Switch flash (CS0) from 0x00000000 to 0x50000000
1004

Copy MMU table to RAM
1005

Setup TTB and domain permissions
1006

Enable MMU
1007

Enable DCache
1008

Enable branch target buffer
1009

Drain write and fill buffer

Flush caches
100A

Start up the eCos kernel or RedBoot
0001

5.3.4 Special RedBoot Commands

The set _npe_nmac command allows the printing and setting of the ethernet MAC address of the
two NPE ports. To print the current MAC addresses of both ports:

RedBoot > set _npe_nac
NPE et hO mac: 00: 02: b3: 3c: 15: ab
NPE et hl mac: 00: 02: b3: 3c: 16: 46
To set the mac address for NPE ethl (NPEC), use something like:
RedBoot > set _npe_nmac -p 1 00: 02: b3: 3c: 16: 46

but with the desired mac address.

5.3.5 Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot ac-
cording to the procedure described in Chapter 3, Rebuilding RedBoot:

export TARGET=i xdp425
export ARCH DI R=arm
export PLATFORM DI R=xscal e/ i xdp425

The names of configuration files are listed above with the description of the associated modes.

5.3.6 Interrupts

RedBoot uses an interrupt vector table which is located at address 0x8004. Entries in this table are
pointers to functions with this protoype::

int irg_handl er(unsigned vector, unsigned data)

61

On the IXDP425 board, the vector argument is one of many interrupts defined in hal / ar n1 xs-
cal e/ i xp425/ current/include/ hal _var_ints. h::

#def i ne CYGNUM HAL_| NTERRUPT _NPEA 0
#def i ne CYGNUM HAL_| NTERRUPT_NPEB 1
#def i ne CYGNUM HAL_| NTERRUPT_NPEC 2
#def i ne CYGNUM HAL_| NTERRUPT_QWL 3
#defi ne CYGNUM HAL_| NTERRUPT_QW2 4
#def i ne CYGNUM HAL_| NTERRUPT_TI MERO 5
#def i ne CYGNUM_HAL_| NTERRUPT_GPI CD 6
#def i ne CYGNUM HAL_| NTERRUPT_GPI OL 7
#def i ne CYGNUM HAL_| NTERRUPT_PCl _|I NT 8
#defi ne CYGNUM HAL_| NTERRUPT_PCl _DMAL 9
#defi ne CYGNUM HAL_| NTERRUPT_PCl _DVA2 10
#def i ne CYGNUM HAL_| NTERRUPT_TI MERL 11
#def i ne CYGNUM HAL_| NTERRUPT_USB 12
#def i ne CYGNUM HAL_| NTERRUPT_UART2 13
#defi ne CYGNUM HAL_| NTERRUPT_TI MESTAMP 14
#def i ne CYGNUM HAL_| NTERRUPT_UART1 15
#def i ne CYGNUM HAL_| NTERRUPT_W\DOG 16
#def i ne CYGNUM_HAL_| NTERRUPT_AHB_PMJ 17
#defi ne CYGNUM HAL_| NTERRUPT_XSCALE PMJ 18
#defi ne CYGNUM HAL_| NTERRUPT_GPI C2 19
#def i ne CYGNUM_HAL_| NTERRUPT_GPI 08 20
#def i ne CYGNUM HAL_I NTERRUPT_GPl O4 21
#def i ne CYGNUM HAL_| NTERRUPT_GPI Cb 22
#def i ne CYGNUM HAL_| NTERRUPT_GPI 06 23
#def i ne CYGNUM HAL_| NTERRUPT_GPI O7 24
#def i ne CYGNUM HAL_| NTERRUPT_GPI C8 25
#def i ne CYGNUM HAL_| NTERRUPT_GPI 09 26
#def i ne CYGNUM HAL_| NTERRUPT_GPI OL0 27
#defi ne CYGNUM HAL_| NTERRUPT_GPI O11 28
#def i ne CYGNUM HAL_| NTERRUPT_GPI O12 29
#defi ne CYGNUM HAL_| NTERRUPT_SW | NT1 30
#defi ne CYGNUM HAL_| NTERRUPT_SW | NT2 31

The data passed to the ISR is pulled from a data table (hal _i nt err upt _dat a) which imme-
diately follows the interrupt vector table. With 32 interrupts, the data table starts at address 0x8084.

An application may create a normal C function with the above prototype to be an ISR. Just poke
its address into the table at the correct index and enable the interrupt at its source. The return value
of the ISR is ignored by RedBoot.

5.3.7 Memory Maps
The RAM based page table is located at RAM start + 0x4000.

NOTE

The virtual memory maps in this section use a C, B, and X column to indicate the caching
policy for the region..

x
@]

B Description

Uncached/ Unbuf f er ed

Uncached/ Buf f er ed

Cached/ Buf f er ed Wite Through, Read Allocate

cNeoNoly
ROO !
oOr o

62

Cached/ Buf f er ed

Wite Back, Read Allocate

011

100 Invalid -- not used

1 01 Uncached/Buffered No wite buffer coal escing

110 Mni DCache - Policy set by Aux Ctl Register

111 Cached/Buffered Wite Back, Read/Wite Allocate

Vi rtual Address Physi cal Address XCB Size (MB) Description
0x00000000 0x00000000 010 256 SDRAM (cached)
0x10000000 0x10000000 010 256 SDRAM (al i as)
0x20000000 0x00000000 000 256 SDRAM (‘uncached)
0x48000000 0x48000000 000 64 PCl Data
0x50000000 0x50000000 010 16 Fl ash (CS0)
0x51000000 0x51000000 000 112 Csl - Csv
0x60000000 0x60000000 000 64 Queue Manager
0xC0000000 0xC0000000 000 1 PCl Controller
0xC4000000 0xC4000000 000 1 Exp. Bus Config
0xC8000000 0xC8000000 000 1 Msc I XP425 10
0xCC000000 0xCC000000 000 1 SDRAM Confi g

5.3.8 Platform Resource Usage

The IXP425 programmable OStimer0 is used for timeout support for networking and XModem file
transfers.

63

5.4 Intel Xscale Generic Residential Gateway

5.4.1 Overview

RedBoot supports the console UART, a PCI based 182559 ethernet card, and both NPE ethernet
ports for communication and downloads. The default serial port settings are 115200,8,N,1. Red-
Boot also supports flash management for the 16 MB onboard flash.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running redboot ROM.ecm
from flash sector.

RAM [RAM] RedBoot running from | redboot RAM.ecm
RAM with RedBoot in
the flash boot sector.

5.4.2 Initial Installation Method

The GRG flash is socketed, so initial installation may be done using an appropriate device program-
mer. JTAG based flash programming may also be used. In either case, the ROM mode RedBoot is
programmed into the boot flash at address 0x00000000.
After booting the initial installation of RedBoot, this warning may be printed:

flash configuration checksumerror or invalid key
This is normal, and indicates that the flash should be configured for use by RedBoot. Even if this

message is not seen, it is recommended that the f conf i g be run to initialize the flash configuration
area. See Section 2.5 for more details.

5.4.3 Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot ac-
cording to the procedure described in Chapter 3, Rebuilding RedBoot:

export TARGET=grg
export ARCH DI R=arm
export PLATFORM DI R=xscal e/ grg

The names of configuration files are listed above with the description of the associated modes.

5.4.4 Interrupts

RedBoot uses an interrupt vector table which is located at address 0x8004. Entries in this table are
pointers to functions with this protoype::

int irg_handl er(unsigned vector, unsigned data)

On the GRG board, the vector argument is one of many interrupts defined in hal / ar n1 xs-
cal e/ i xp425/ current/include/ hal _var_ints. h::

64

#def i ne CYGNUM HAL_| NTERRUPT_NPEA 0
#def i ne CYGNUM HAL_| NTERRUPT_NPEB 1
#def i ne CYGNUM HAL_| NTERRUPT_NPEC 2
#def i ne CYGNUM HAL_| NTERRUPT QWL 3
#def i ne CYGNUM HAL_| NTERRUPT_QW2 4
#defi ne CYGNUM HAL_| NTERRUPT_TI MERO 5
#def i ne CYGNUM HAL_I NTERRUPT_GPI CD 6
#def i ne CYGNUM HAL_| NTERRUPT_GPI OL 7
#defi ne CYGNUM HAL_| NTERRUPT_PCl _|I NT 8
#def i ne CYGNUM HAL_| NTERRUPT_PCl _DMAL 9
#def i ne CYGNUM HAL_| NTERRUPT_PCl _DVA2 10
#def i ne CYGNUM HAL_| NTERRUPT_TI MERL 11
#defi ne CYGNUM HAL_| NTERRUPT_USB 12
#defi ne CYGNUM HAL_| NTERRUPT_UART2 13
#defi ne CYGNUM HAL_| NTERRUPT_TI MESTAMP 14
#def i ne CYGNUM HAL_| NTERRUPT_UART1 15
#def i ne CYGNUM HAL_| NTERRUPT_W\DOG 16
#def i ne CYGNUM HAL_| NTERRUPT_AHB_PMJ 17
#defi ne CYGNUM HAL_| NTERRUPT_XSCALE PMJ 18
#def i ne CYGNUM HAL_| NTERRUPT_GPI C2 19
#def i ne CYGNUM HAL_| NTERRUPT_GPI 08 20
#def i ne CYGNUM_HAL_| NTERRUPT_GPl O4 21
#def i ne CYGNUM HAL_| NTERRUPT_GPI Cb 22
#def i ne CYGNUM_HAL_| NTERRUPT_GPI 06 23
#def i ne CYGNUM HAL_| NTERRUPT_GPI O7 24
#def i ne CYGNUM_HAL_| NTERRUPT_GPI 08 25
#def i ne CYGNUM_HAL_| NTERRUPT_GPI 09 26
#def i ne CYGNUM HAL_| NTERRUPT_GPI OL0 27
#def i ne CYGNUM HAL_| NTERRUPT_GPI O11 28
#defi ne CYGNUM HAL_| NTERRUPT_GPI O12 29
#defi ne CYGNUM HAL_| NTERRUPT_SW | NT1 30
#defi ne CYGNUM HAL_| NTERRUPT_SW | NT2 31

The data passed to the ISR is pulled from a data table (hal _i nt er r upt _dat a) which imme-
diately follows the interrupt vector table. With 32 interrupts, the data table starts at address 0x8084.

An application may create a normal C function with the above prototype to be an ISR. Just poke
its address into the table at the correct index and enable the interrupt at its source. The return value
of the ISR is ignored by RedBoot.

5.4.5 Memory Maps
The RAM based page table is located at RAM start + 0x4000.

NOTE

The virtual memory maps in this section use a C, B, and X column to indicate the caching
policy for the region..

C B Description

Uncached/ Unbuf f er ed

Uncached/ Buf f er ed

Cached/ Buf f er ed Wite Through, Read Allocate
Cached/ Buf f ered Wite Back, Read Allocate
Invalid -- not used

Uncached/ Buffered No wite buffer coal escing

x

PRPOOOO !
OOrRFrOO!
PORFRPORFRO

65

0 Mni
1

0x00000000
0x10000000
0x20000000
0x48000000
0x50000000
0x51000000
0x60000000
0xC0000000
0xC4000000
0xC8000000
0xCC000000

DCache -
Cached/ Buf f er ed

Policy set by Aux Ctl

Physi cal Address
0x00000000 010
0x00000000 010
0x00000000 000
0x48000000 000
0x50000000 010
0x51000000 000
0x60000000 000
0xC0000000 000
0xC4000000 000
0xC8000000 000
0xCC000000 000

5.4.6 Platform Resource Usage

Regi st er

XCB Size (MB)

Wite Back, Read/ Wite Allocate

Description
SDRAM (cached)
SDRAM (al i as)
SDRAM (uncached)
PCl Data

Fl ash (CS0)

Csl - Cs7

Queue Manager
PCl Controller
Exp. Bus Config
Msc CPU IO
SDRAM Confi g

The IXP425 programmable OStimer0 is used for timeout support for networking and XModem file

transfers.

66

5.5 Motorola PrPMC1100 CPU card

5.5.1 Overview

RedBoot supports the builtin high-speed and console UARTSs and both NPE based ethernet ports.
The console UART is the default and feeds the front panel COM1 connector. The high-speed UART
signals are only available from the PN4 IO connector. Therefore, usability of this port depends on
the carrier board used. The default serial port settings are 115200,8,N,1. RedBoot also supports
flash management for the 16MB boot flash on the mainboard.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running redboot ROM.ecm
from flash sector.

RAM [RAM] RedBoot running from | redboot RAM.ecm
RAM with RedBoot in
the flash boot sector.

5.5.2 Initial Installation Method

The PrPMC1100 flash is socketed, so initial installation may be done using an appropriate device
programmer. JTAG based flash programming may also be used. In either case, the ROM mode
RedBoot is programmed into the boot flash at address 0x00000000.

After booting the initial installation of RedBoot, this warning may be printed:

flash configuration checksumerror or invalid key

This is normal, and indicates that the flash should be configured for use by RedBoot. Even if this
message is not seen, it is recommended that the f conf i g be run to initialize the flash configuration
area. See Section 2.5 for more details.

5.5.3 Special RedBoot Commands

The set _npe_nmac command allows the printing and setting of the ethernet MAC address of the
two NPE ports. To print the current MAC addresses of both ports:

RedBoot > set _npe_nac
NPE et hO mac: 00:02: b3: 3c: 15: ab
NPE et hl mac: 00: 02: b3: 3c: 16: 46
To set the mac address for NPE ethl (NPEC), use something like:
RedBoot > set _npe_nmac -p 1 00:02: b3: 3c: 16: 46

but with the desired mac address.

67

5.5.4 Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot ac-
cording to the procedure described in Chapter 3, Rebuilding RedBoot:

export TARGET=prpntl1100
export ARCH DI R=arm
export PLATFORM DI R=xscal e/ pr pnt1100

The names of configuration files are listed above with the description of the associated modes.

5.5.5 Interrupts

RedBoot uses an interrupt vector table which is located at address 0x8004. Entries in this table are
pointers to functions with this protoype::

int irqg_handl er(unsigned vector, unsigned data)

On the PrPMC1100 board, the vector argument is one of many interrupts defined in
hal / armf xscal e/ i xp425/ current/include/ hal _var _ints. h::

#define CYGNUM HAL_| NTERRUPT NPEA 0

#def i ne CYGNUM HAL_| NTERRUPT_NPEB 1
#def i ne CYGNUM HAL_| NTERRUPT_NPEC 2
#def i ne CYGNUM HAL_| NTERRUPT_QWL 3
#def i ne CYGNUM HAL_| NTERRUPT_QW2 4
#defi ne CYGNUM HAL_| NTERRUPT_TI MERO 5
#def i ne CYGNUM_HAL_| NTERRUPT_GPI CD 6
#def i ne CYGNUM HAL_I NTERRUPT_GPI OL 7
#def i ne CYGNUM HAL_| NTERRUPT_PCl _|I NT 8
#defi ne CYGNUM HAL_| NTERRUPT_PCl _DMAL 9
#defi ne CYGNUM HAL_| NTERRUPT_PCl _DVA2 10
#def i ne CYGNUM HAL_| NTERRUPT_TI MERL 11
#def i ne CYGNUM HAL_| NTERRUPT_USB 12
#defi ne CYGNUM HAL_| NTERRUPT_UART2 13
#defi ne CYGNUM HAL_| NTERRUPT_TI MESTAMP 14
#defi ne CYGNUM HAL_| NTERRUPT_UART1 15
#def i ne CYGNUM HAL_| NTERRUPT_W\DOG 16
#def i ne CYGNUM HAL_| NTERRUPT_AHB_PMJ 17
#defi ne CYGNUM HAL_| NTERRUPT_XSCALE PMJ 18
#def i ne CYGNUM_HAL_I NTERRUPT_GPI C2 19
#defi ne CYGNUM HAL_| NTERRUPT_GPI C8 20
#def i ne CYGNUM HAL_| NTERRUPT_GPl O4 21
#def i ne CYGNUM HAL_| NTERRUPT_GPI C6 22
#def i ne CYGNUM HAL_| NTERRUPT_GPI 06 23
#def i ne CYGNUM HAL_| NTERRUPT_GPI O7 24
#defi ne CYGNUM HAL_| NTERRUPT_GPI 08 25
#def i ne CYGNUM HAL_| NTERRUPT_GPI 09 26
#def i ne CYGNUM HAL_| NTERRUPT_GPI OL0 27
#def i ne CYGNUM HAL_| NTERRUPT_GPI OL1 28
#defi ne CYGNUM HAL_| NTERRUPT_GP| O12 29
#def i ne CYGNUM HAL_| NTERRUPT_SW | NT1 30
#defi ne CYGNUM HAL_| NTERRUPT_SW. | NT2 31

The data passed to the ISR is pulled from a data table (hal _i nt er r upt _dat a) which imme-
diately follows the interrupt vector table. With 32 interrupts, the data table starts at address 0x8084.

68

An application may create a normal C function with the above prototype to be an ISR. Just poke
its address into the table at the correct index and enable the interrupt at its source. The return value
of the ISR is ignored by RedBoot.

5.5.6 Memory Maps
The RAM based page table is located at RAM start + 0x4000.

NOTE

The virtual memory maps in this section use a C, B, and X column to indicate the caching
policy for the region..

X C B Description

0 0 0 Uncached/ Unbuffered

0 0 1 Uncached/Buffered

0 1 0 Cached/Buffered Wite Through, Read Allocate

011 Cached/Buffered Wite Back, Read All ocate

100 Invalid -- not used

1 01 Uncached/Buffered No wite buffer coal escing

110 Mni DCache - Policy set by Aux Ctl Register

111 Cached/Buffered Wite Back, Read/ Wite All ocate

Vi rtual Address Physi cal Address XCB Size (MB) Description
0x00000000 0x00000000 010 256 SDRAM (cached)
0x10000000 0x10000000 010 256 SDRAM (al i as)
0x20000000 0x00000000 000 256 SDRAM (uncached)
0x48000000 0x48000000 000 64 PCl Data
0x50000000 0x50000000 010 16 Fl ash (CS0)
0x51000000 0x51000000 000 112 CS1l - Cs7
0x60000000 0x60000000 000 64 Queue Manager
0xC0000000 0xC0000000 000 1 PClI Controller
0xC4000000 0xC4000000 000 1 Exp. Bus Config
0xC8000000 0xC8000000 000 1 Msc CPU IO
0xCC000000 0xCC000000 000 1 SDRAM Confi g

5.5.7 Platform Resource Usage

The CPU programmable OStimer0 is used for timeout support for networking and XModem file

transfers.

69

5.6 Intel SA1100 (Brutus)

5.6.1 Overview

RedBoot supports both board serial ports on the Brutus board. The default serial port settings are
38400,8,N,1. flash management is not currently supported.

Two basic RedBoot configurations are supported:

* RedBoot running from the board’s flash boot sector.
* RedBoot running from RAM with RedBoot in the flash boot sector.

5.6.2 Initial Installation Method

Device programmer is used to program socketecflash parts.

5.6.3 Special RedBoot Commands

None.

5.6.4 Memory Maps

The first level page table is located at physical address 0xc0004000. No second level tables are
used.

NOTE

The virtual memory maps in this section use a C and B column to indicate whether or not the
region is cached (C) or buffered (B).

Physi cal Address Range Descri ption
0x00000000 - OxOO0Offfff Boot ROM

0x08000000 0x083fffff Application flash
0x10000000 0x100fffff SRAM

0x18000000 Ox180f ffff Chip Select 3
0x20000000 Ox3fffffff PCMCI A

0x80000000 Oxbfffffff SA-1100 Internal Registers
0xc0000000 Oxc7ffffff DRAM Bank 0
0xc8000000 Oxcfffffff DRAM Bank 1
0xd0000000 Oxd7ffffff DRAM Bank 2
0xd8000000 Oxdf ffffff DRAM Bank 3
0xe0000000 Oxe7ffffff Cache C ean

Vi rtual Address Range C B Description
0x00000000 0x003fffff Y Y DRAM Bank O
0x00400000 oxo07fffff Y Y DRAM Bank 1
0x00800000 Ox00bfffff Y Y DRAM Bank 2
0x00c00000 oxooffffff Y Y DRAM Bank 3
0x08000000 0x083fffff Y Y Application flash

70

0x10000000 -
0x20000000 -
0x40000000 -
0x80000000 -
0xe0000000 -

Ox100fffff
Ox3fffffff
0x400f ffff
Oxbf ffffff
Oxe7ffffff

SRAM

PCMCI A

Boot ROM

SA-1100 Internal Registers
Cache C ean

<zZ=<zZ<
<zZz=<zZZ

5.6.5 Resource Usage

The flash based RedBoot image occupies flash addresses 0x40000000 - 0x4000ffff. The RAM
based RedBoot image occupies RAM addresses 0x10000 - Ox2ffff. RAM addresses from 0x30000
to the end of RAM are available for general use such as a temporary scratchpad for downloaded
images before they are written to flash. The SA11x0 OS timer is used as a polled timer to provide
timeout support for XModem file transfers.

5.6.6 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for TARGET,
ARCH_DIR and PLATFORM_DIR on this platform are “brutus”, “arm” and “sal 1x0/brutus” re-
spectively. Note that the configuration export files supplied in the hal / ar ml sal1x0/ br u-
t us/ VERSI ON m sc directory in the RedBoot source tree should be used.

71

5.7 Intel StrongArm EBSA 285

5.7.1 Overview

RedBoot uses the single EBSA-285 serial port. The default serial port settings are 38400,8,N,1. If
the EBSA-285 is used as a host on a PCI backplane, ethernet is supported using an Intel PRO/100+
ethernet adapter.

Management of onboard flash is also supported. Two basic RedBoot configurations are supported:

* RedBoot running from the board’s flash boot sector.
* RedBoot running from RAM with RedBoot in the flash boot sector.

5.7.2 Initial Installation Method

A linux application is used to program the flash over the PCI bus. Sources and build instructions
for this utility are located in the RedBoot sources in:

.../ packages/ hal / ar mf ebsa285/ current/support/linux/safl _util

5.7.3 Flash management

5.7.3.1 Updating the primary RedBoot image

To update the primary RedBoot images, follow the procedures detailed in Section 4.1.3, but the
actual numbers used with the flags in the sample commands should be:

-f 0x41000000
-b 0x100000
-1 0x40000

5.7.3.2 Updating the secondary RedBoot image

To update the secondary RedBoot images, follow the procedures detailed in Section 4.1.2, but the
actual numbers used with the flags in the sample commands should be:

-f 0x41040000
-b 0x20000
-r 0x20000
-1 0x40000

5.7.4 Communication Channels
Serial, Intel PRO 10/100+ 82559 PCI ethernet card.

5.7.5 Special RedBoot Commands

None.

72

5.7.6 Memory Maps

Physical and virtual mapping are mapped one to one on the EBSA-285 using a first level page table
located at address 0x4000. No second level tables are used.

% NOTE

The virtual memory maps in this section use a C and B column to indicate whether or not the
region is cached (C) or buffered (B).

Addr ess Range C B Description
0x00000000 - OxO01ffffff Y Y SDRAM

0x40000000 - Ox400fffff N N 21285 Registers
0x41000000 - Ox413fffff Y N flash

0x42000000 - Ox420fffff N N 21285 CSR Space
0x50000000 - Oxhoffffff Y Y Cache O ean
0x78000000 - Ox78ffffff N N Qutbound Wite Flush
0x79000000 - Ox7cOfffff N N PC 1ACK/ Config/1O
0x80000000 - Oxffffffff N Y PCl Menory

5.7.7 Resource Usage

The flash based RedBoot image occupies flash addresses 0x41000000 - 0x4 103 ffff. It also reserves
the first 192K bytes of RAM for runtime uses. The RAM based RedBoot image occupies RAM
addresses 0x30000 - 0x5ftff. RAM addresses from 0x60000 to the end of RAM are available for
general use such as a temporary scratchpad for downloaded images before they are written to flash.

Timer3 is used as a polled timer to provide timeout support for networking and XModem file trans-
fers.

5.7.8 Building eCos Test Cases to run with old RedBoots

If using older versions of RedBoot, the default configuration for EBSA-285 will send diagnostic
output to the serial line only, not over an ethernet connection. To allow eCos programs to use
RedBoot to channel diagnostic output to GDB whether connected by net or serial, enable the con-
figuration option

CYGSEM HAL_VI RTUAL_VECTOR DI AG
"Do diagnostic IO via virtual vector table"

located here in the common HAL configuration tree:

"eCos HAL"
"ROM noni tor support™
"Enabl e use of virtual vector calling interface"
"Do diagnostic 1O via virtual vector table"

Other than that, no special configuration is required to use RedBoot.

If you have been using built-in stubs to acquire support for thread-aware debugging, you can still
do that, but you must only use the serial device for GDB connection and you must not enable the

73

option mentioned above. However, it is no longer necessary to do that to get thread-awareness;
RedBoot is thread aware.

5.7.9 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for TAR-
GET, ARCH_DIR and PLATFORM_DIR on this platform are “ebsa285”, “arm” and “ebsa285”
respectively. Note that the configuration export files supplied in the hal / ar m ebsa285/ VER-
SI OV m sc directory in the RedBoot source tree should be used.

74

5.8 Intel SA1100 Multimedia Board

5.8.1 Overview

RedBoot supports both board serial ports. The default serial port settings are 38400,8,N,1. flash
management is also supported. Two basic RedBoot configurations are supported: n

* RedBoot running from the board’s flash boot sector.
» RedBoot running from RAM with RedBoot in the flash boot sector.

5.8.2 Initial Installation Method

A device programmer is used to program socketed flash parts.

5.8.3 Special RedBoot Commands

None.

5.8.4 Memory Maps

The first level page table is located at physical address 0xc0004000. No second level tables are
used.

NOTE

The virtual memory maps in this section use a C and B column to indicate whether or not the
region is cached (C) or buffered (B).

Physi cal Address Range Description

0x00000000 Ox000f ffff Boot flash

0x08000000 0x083f ffff Application flash
0x10000000 Ox107fffff SA-1101 Board Registers
0x18000000 - 0Ox180fffff Ct 8020 DsSP

0x18400000 - 0Ox184fffff XBusReg

0x18800000 - 0x188fffff SysRegA

0x18c00000 Ox18cfffff SysRegB

0x19000000 - Ox193fffff Spare CPLD A
0x19400000 - Ox197fffff Spare CPLD B
0x20000000 - Ox3fffffff PCMCI A

0x80000000 Oxbfffffff SA1100 Internal Registers
0xc0000000 - OxcO7fffff DRAM Bank 0O

0xe0000000 - Oxe7ffffff Cache C ean

Vi rtual Address Range C B Description
0x00000000 - Oxo007fffff Y Y DRAM Bank O
0x08000000 0x083fffff Y Y Application flash
0x10000000 Ox100fffff N N SA- 1101 Registers
0x18000000 - Ox180fffff N N Ct8020 DSP
0x18400000 - 0x184fffff N N XBusReg

75

0x18800000 - 0x188fffff N N SysRegA

0x18c00000 - Ox18cfffff N N SysRegB

0x19000000 - 0x193fffff N N Spare CPLD A

0x19400000 - 0x197fffff N N Spare CPLD B

0x20000000 - Ox3fffffff N N PCMCA

0x50000000 - Ox500fffff Y Y Boot flash

0x80000000 - Oxbfffffff N N SA1100 Internal Registers
0xc0000000 - Oxco7fffff N Y DRAM Bank O

0xe0000000 - Oxe7ffffff Y Y Cache Cean

5.8.5 Resource Usage

The flash based RedBoot image occupies virtual addresses 0x50000000 - 0x5000ffff. The RAM
based RedBoot image occupies virtual addresses 0x10000 - 0x2ffff. RAM addresses from 0x30000
to the end of RAM are available for general use such as a temporary scratchpad for downloaded
images before they are written to flash.

The SA11x0 OS timer is used as a polled timer to provide timeout support for XModem file trans-
fers.

5.8.6 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for
TARGET, ARCH _DIR and PLATFORM DIR on this platform are “sal100mm”, “arm” and
“sall1x0/sal100mm” respectively. Note that the configuration export files supplied in the
hal / armf sal1x0/ sal100mm VERSI ON/ m sc directory in the RedBoot source tree should
be used.

76

5.9 Intel SA1110 (Assabet)

5.9.1 Overview

RedBoot supports the board serial port and the compact flash ethernet port. The default serial port
settings are 38400,8,N,1. RedBoot also supports flash management on the Assabet. Two basic
RedBoot configurations are supported:

* RedBoot running from the board’s flash boot sector.
* RedBoot running from RAM with RedBoot in the flash boot sector.

5.9.2 Initial Installation Method

A Windows or Linux utility is used to program flash over parallel port driven JTAG interface. See
board documentation for details on in situ flash programming.

The flash parts are also socketed and may be programmed in a suitable device programmer.

5.9.3 Flash management

5.9.3.1 Updating the primary RedBoot image
To update the primary RedBoot images, follow the procedures detailed in Section 4.1.3, but the
actual numbers used with the flags in the sample commands should be:

-f 0x50000000
-b 0x60000
-1 0x40000

5.9.3.2 Updating the secondary RedBoot image

To update the secondary RedBoot images, follow the procedures detailed in Section 4.1.2, but the
actual numbers used with the flags in the sample commands should be:

-f 0x50040000
-b 0x20000
-r 0x20000
-1 0x40000

5.9.4 Special RedBoot Commands

None.

5.9.5 Memory Maps

The first level page table is located at physical address 0xc0004000. No second level tables are
used.

77

NOTE

The virtual memory maps in this section use a C and B column to indicate whether or not the
region is cached (C) or buffered (B).

Physi cal Address Range Description

0x00000000 - OxO7ffffff flash

0x08000000 - OxOf ffffff SA- 1111 Board fl ash
0x10000000 - Ox17ffffff Board Registers
0x18000000 - Ox1fffffff Et her net

0x20000000 - Ox2fffffff SA-1111 Board PCMCI A
0x30000000 - Ox3fffffff Conpact Fl ash

0x40000000 - Ox47ffffff SA- 1111 Board

0x48000000 - Ox4bffffff GFX

0x80000000 - Oxbfffffff SA-1110 Internal Registers
0xc0000000 - Oxc7ffffff DRAM Bank 0O

0xc8000000 - Oxcfffffff DRAM Bank 1

0xd0000000 - Oxd7ffffff DRAM Bank 2

0xd8000000 - Oxdfffffff DRAM Bank 3

0xe0000000 - Oxe7ffffff Cache C ean

Vi rtual Address Range C B Description

0x00000000 - OxO1ffffff Y Y DRAM Bank O

0x08000000 - Oxofffffff Y Y SA-1111 Board flash
0x10000000 - Ox17ffffff N N Board Registers
0x18000000 - Ox1fffffff N N Ethernet

0x20000000 - Ox2fffffff N N SA-1111 Board PCMCI A
0x30000000 - Ox3fffffff N N Conpact Flash
0x40000000 - Ox47ffffff N N SA-1111 Board
0x48000000 - Ox4bffffff N N G-X

0x50000000 - Ox57ffffff Y Y flash

0x80000000 - Oxbfffffff N N SA-1110 Internal Registers
0xc0000000 - Oxclffffff N Y DRAM Bank O

0xe0000000 - Oxe7ffffff Y Y Cache O ean

The flash based RedBoot image occupies virtual addresses 0x50000000 - 0Ox5003ffff.

5.9.6 Resource Usage

The RAM based RedBoot image occupies RAM addresses 0x20000 - Ox5ffff. RAM addresses
from 0x60000 to the end of RAM are available for general use such as a temporary scratchpad for
downloaded images before they are written to flash.

The SA11x0 OS timer is used as a polled timer to provide timeout support for network and XMo-
dem file transfers.

5.9.7 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for TARGET,
ARCH_DIR and PLATFORM DIR on this platform are “assabet”, “arm” and “sal 1x0/assabet”
respectively. Note that the configuration export files supplied in the hal / ar ml sal11x0/ assa-
bet / VERSI ON m sc directory in the RedBoot source tree should be used.

78

5.10 NEC uPD985xx ASCOM LAKI Board

5.10.1 Overview
RedBoot uses the single LAKI serial port. The default serial port settings are 38400,8,N,1.
Management of onboard flash is also supported.

Three basic RedBoot configurations are supported:

* RedBoot running from the board’s flash boot sector. (“ROM” startup)

* RedBoot running at a higher address in the flash (“POST” startup) - for cooperation with cus-
tomer POST code or other boot image.

* RedBoot running in RAM (“RAM?” startup).

By default ROM startup lives at the base of flash at 0xBFC00000; POST at 0xBFC80000 and RAM
applications including RedBoot are loaded at 0x80020000. Suitable default entries are provided
by fis init asusual

Configuration fragment “.ecm” files are provided to build RedBoot in each of these startup types.

5.10.2 Initial Installation Method

This assumes that you will install all 3 variants. Should you wish to preserve the customer boot-
loader behaviour, don’t bother with any mention of ROM startup RedBoot below; just install POST
and RAM startup. You would then have to use the customer bootloader to start RedBoot if/when
you want to use RedBoot and eCos.

The ASCOM boot image supports SRecord downloading over the serial line (as does
RedBoot itself). Obtain SRecord versions of each RedBoot image using commands such
as m ps64vr4100el - el f-obj copy -O srec install/bin/redboot.elf
/tftpboot/redboot-RAM srec

See below for information about rebuilding RedBoot from sources.

5.10.2.1 Run a RAM-startup RedBoot

Load an SRecord RAM-startup RedBoot using the “SRecord download and execute” option in the
ASCOM Boot image menu.

This is the initial splashscreen:

ascom PLC Boot | oader [Ver. 2.0]
Jul 04 2001 - 14:51:39
System | nf ormati on

Top Menory address : OxAO7FFFEO

Top Flash address : OxBFFFFF80

R O S S O O

Press any key to enter menu, or wait for countdown
to start your default application!

R R b R R S R S b S o S R R S S R R S R R

2

79

So press a key, to get the menu screen. Navigate to start S3 download and execute thus, then press
enter:

PLC Boot| oader [Ver. 2.0] Jul 04 2001 - 14:51:39

Configuration

Vi ew nenory

jump in menory

boot from sdram

[START S3 DOANLOAD AND EXECUTE]

start S3 downl oad

start gdb-stub

jump at Oxbfc20000 (start Green Hlls nonserv)

[use : nor N- next, por P - previous, x, X or enter - valid]

The bootloader will show this screen, with a rotating caret as is usual when the download starts:

ascom PLC Boot | oader [Ver. 2.0]
Jul 04 2001 - 14:51:39

Boot | oader starts ...

Send the SRecord version of RedBoot down the serial line. On LINUX cat /tft pboot/red-
boot - RAM srec > /dev/ttySO for example.

You should now have a running RedBoot.

5.10.2.2 Initialize the Flash

Initialize the flash image system and RedBoot’s flash configuration data.

RedBoot> fis init

Place a valid fconfig record in the flash:

RedBoot > fco

(just change something, say yes to update, then change it back and say yes to update to make it go
into the flash)

For more information about these commands, see Section 2.4 and Section 2.5.

5.10.2.3 Install POST RedBoot in flash

Load a POST-startup RedBoot into RAM then save it in flash:
RedBoot> load -my -b 0x80100000

Use minicom’s “send” function “AS with ymodem to send your file eg./ t f t pboot / r edboot -
POST. srec

See Section 2.3.3 for details of the load command.

RedBoot > fis cre RedBoot[post] -b 0x80100000 -r 0x9fc80000
An i mage naned ' RedBoot[post]’ exists - are you sure (y/n)? vy

80

* CAUTI ON * about to program ' RedBoot [post]’

at Oxbf c80000. . Oxbfcbffff from 0x80100000 -

5.10.2.4 Install RedBoot in the boot block

Load a ROM-startup RedBoot into RAM then save it in flash:

RedBoot> load -my -b 0x80100000

Use minicom’s “send” function “AS with ymodem to send your file eg./ t f t pboot / r edboot -

ROM srec

See Section 2.3.3 for details of the load command.

-b 0x80100000 -r 0x9f c00000
are you sure (y/n)? vy

RedBoot > fis cre RedBoot
An i mage naned ' RedBoot’

exi sts -

* CAUTI ON * about to program’ RedBoot’

at Oxbf c00000. . Oxbf c3ffff from 0x80100000 -

Reset RedBoot which should run the flash-based RedBoot:

RedBoot > reset

To check that all is well in the fis, youcanuse thefi S | i St command. You should see something

are you sure (y/n)? vy

are you sure (y/n)? vy

like this:

RedBoot> fis |is

Narre FLASH addr Mem addr Length Entry point
RedBoot 0xBFC00000 O0xBFCO0000 0x00040000 0x9FC00000
RedBoot [post] OxBFC80000 O0xBFC80000 0x00040000 0x9FC80000
RedBoot [backup] OxBFCCO000 0x80020000 0x00040000 0x800200A4
RedBoot config OxBFFCO000 O0xBFFCO000 0x00020000 0x00000000
FI'S directory OxBFFEO00O OxBFFEOO00 0x00020000 0x00000000

RedBoot >

For more information about the fis, see Section 2.4.

% NOTE

If you chose not to load a ROM-startup RedBoot, rather than r eset above, type go
Oxbf c80000 to jump into the POST-startup RedBoot.

5.10.2.5 Install RAM-based RedBoot in flash

You can now set up RedBoot’s networking parameters following the instructions in Section 1.4.1
and then use standard methods to update RedBoot in flash, including the RAM-startup RedBoot
image called RedBoot [backup] . See the next section and Section 4.1.3 for details.

5.10.3 Flash management

5.10.3.1 Updating the primary ROM RedBoot image

To update the primary RedBoot images, follow the procedures detailed in Section 4.1.3, but the
actual numbers used with the flags in the sample commands should be:

81

-f Oxbf c00000
-b 0x80100000
- 0x40000
-r 0x9f c00000

5.10.3.2 Updating the secondary RAM RedBoot image

To update the secondary RedBoot images, follow the procedures detailed in Section 4.1.2, but the
actual numbers used with the flags in the sample commands should be:

-f Oxbf cc0000

-b 0x80100000

-1 0x40000
-r 0x80020000

5.10.3.3 Updating the POST RedBoot image

To update the POST RedBoot image, follow the procedures detailed in Section 4.1.3, but use a
POST RedBoot image and the actual numbers used with the flags in the sample commands should
be (also see above for example):

-f 0xbf c80000

-b 0x80100000

- 0x40000
-r 0x9f c80000

5.10.3.4 Starting RedBoot from ASCOM Boot image

If you chose not to load a ROM-startup RedBoot, then you will need to select “Jump in Memory”
and type in bf c80000 (Bee Eff Cee Eight oh oh oh oh, not the default) then “yes” to confirm.
RedBoot should start, all happy.

PLC Boot| oader [Ver. 2.0] Jul 04 2001 - 14:51:39

Configuration

Vi ew nenory

[JUWMP I N MEMORY]

boot from sdram

start S3 downl oad and execute

start S3 downl oad

start gdb-stub

jurmp at Oxbfc20000 (start Green Hlls nonserv)

[use : nor N- next, por P - previous, x, X or enter - valid]

You will need to do this every time the board is power cycled.

5.10.4 Communication Channels
Serial, Ethernet.
The default serial setup is 38400 8N1.

82

The ethernet acquires its ESA from the Serial EEPROM that is automatically managed by the
uPD985xx MicroWire subsystem.

5.10.5 Special RedBoot Commands

None. But this board is unusual in that it might be fitted with an oversized Intel StrataFlash device.
In this case the flash device driver takes special care to use the flash correctly, and reports as such
during startup:

FLASH: Oversized device! End addr 0xc0400000 changed to Oxc0000000
FLASH: Oxbf c00000 - 0xc0000000, 32 bl ocks of 0x00020000 bytes each.

The CPU is unable to address the upper half of the flash device which would live in addresses
0Oxc0000000 - 0xc0400000 so it adjusts the description of the flash device to accommodate
this limitation.

5.10.6 Memory Maps

This is all dictated by the MIPS architecture of the VR4120 MIPS Core at the heart of the
uPD985xx devices. Addresses 0Xx80000000 - Ox9f ffffff are cachable access to physical
address space, and addresses 0xa0000000 - Oxbfffffff are non-cachable access to
physical address space. RedBoot and eCos uses only these two areas. Flash and I/O areas are
accessed through the non-cachable area; RAM is accessed (mainly) through the cachable space.

5.10.7 Resource Usage

The flash based RedBoot image occupies flash addresses Oxbf cO0000 - Oxbfc3ffff. It
also reserves the first 128K bytes of RAM for runtime uses. The RAM based RedBoot image
occupies RAM addresses 0x80020000 - 0x8003f f f f . RAM addresses from 0x40000 to the
end of RAM are available for general use such as a temporary scratchpad for downloaded images
before they are written to flash.

5.10.8 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for TARGET,
ARCH_DIR and PLATFORM_DIR on this platform are “lakil”, “mips” and “lakil” respectively.
Note that the configuration export files supplied in the hal / m ps/| aki 1/ VERSI ON mi sc
directory in the RedBoot source tree should be used.

83

5.11 Intel SA1110 ASCOM/ACN PLC2 Board

5.11.1 Overview

RedBoot supports the board serial ports attached to UART1 and UART3. Both channels are used
for the RedBoot prompt et al, and you can connect using GDB to either.

The default serial port settings are 38400,8,N,1.

RedBoot supports FLASH management on the Plc2. Three basic RedBoot configurations are sup-
ported: RedBoot running from the board’s FLASH boot sector ("ROM"), RedBoot running at ad-
dress 0x40000 in the FLASH ("POST") - for cooperation with customer POST code - and normal
eCos RAM startup.

5.11.2 Initial Installation Method

A Linux utility "Jflash" is used to program FLASH over a parallel port driven JTAG interface. A
special hardware box from ACN is required. After that, RedBoot can be managed and upgraded
in the usual manner using its own flash management commands in the usual manner; "fis init" will
fill in appropriate defaults for the flash addresses concerned.

5.11.3 Special RedBoot Commands

None.

5.11.4 Memory Maps

The first level page table is located at physical address 0xc0004000. No second level tables are
used.

% NOTE

The virtual memory maps in this section use a C and B column to indicate whether or not the
region is cached (C) or buffered (B).

Physi cal Address Range

Description

0x00000000 - OxO007fffff 8Mb flash (nCs0)

0x18000000 - Ox2180fffff Altera FPGA and X-Bus (nCS3)
0x20000000 - Ox2fffffff PCMCI A sl ot O - LAN91C96 Et hernet
0x80000000 - Oxbfffffff SA-1110 Internal Registers
0xc0000000 - Oxc7ffffff DRAM Bank 0

0xc8000000 - Oxcfffffff DRAM Bank 1

0xe0000000 - Oxe7ffffff Cache Cl ean

Vi rtual Address Range C B Description

0x00000000 - OxO001fffff Y Y DRAM- 8My to 32Mo

0x18000000 - Ox180fffff N N Altera FPGA and X-Bus (nCS3)
0x20000000 - oOx2fffffff NN PCMCIA slot O - LAN91C96 Ethernet

84

0x50000000 -
0x80000000 -
0xc0000000 -
0xc8000000 -
0xe0000000 -

Ox507fffff
Oxbf ffffff
OxcOf fffff
Oxc8ffffff
Oxe7ffffff

8M flash (nCS0)

SA-1110 Internal Registers
DRAM Bank 0:8 or 16M

DRAM Bank 1:8 or 16My or absent
Cache d ean

<zzz<
<<=<zZ<

The flash based RedBoot image occupies virtual addresses 0x50000000 - 0x5001 fftf.
SDRAM can be any of
1 x 8Mb = 8Mb 2 x 8Mb = 16Mb

1 x 16Mb = 16Mb 2 x 16Mb = 32Mb

All are programmed the same way in the memory controller. Startup code detects which is fitted
and programs the memory map accordingly. If the device(s) is 8Mb, then there are gaps in the
physical memory map, because a high order address bit is not connected. The gaps are the higher
2Mb out of every 4Mb.

The SA11x0 OS timer is used as a polled timer to provide timeout support within RedBoot.

5.11.5 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for TARGET,
ARCH_DIR and PLATFORM_DIR on this platform are “plc2”, “arm” and “sal 1x0/plc2” respec-
tively. Note that the configuration export files supplied in the hal / ar ml sal1x0/ pl c2/ VER-
SI OV m sc directory in the RedBoot source tree should be used.

85

5.12 MIPS Atlas Board with CoreLV 4Kc and CorelLV 5Kc
5.12.1 Overview

RedBoot supports the DgbSer serial port and the built in ethernet port for communication and
downloads. The default serial port settings are 115200,8,N,1. RedBoot runs from and supports
flash management for the system flash region. These configurations are supported:

» RedBoot running from the system flash boot sector.
» RedBoot running from RAM with RedBoot in the system flash boot sector.

5.12.2 Initial Installation

RedBoot is installed using the code download facility built into the Atlas board. See the Atlas User
manual for details, and also the Atlas download format in Section 5.12.2.2.

5.12.2.1 Quick download instructions

Here are quick start instructions for downloading the prebuilt RedBoot image.

1. Locate the prebuilt files in the bin directory: del et eal | . dl and r edboot . dl .

2. Make sure switch S1-1 is OFF and switch S5-1 is ON. Reset the board and verify that the LED
display reads FI ash DL.

3. Make sure your parallel port is connected to the 1284 port Of the Atlas board.
4. Send the deleteall.dl file to the parallel port to erase previous images:
% cat deleteall.dl >/dev/lp0

When this is complete, the LED display should read “Deleted.”
5. Send the RedBoot image to the board:
% cat redboot.dl >/dev/I|p0
When this is complete, the LED display should show the last address programmed. This will
be something like: 1f ¢17000.
6. Change switch S5-1 to OFF and reset the board. The LED display should read “RedBoot”.

7. Run the RedBoot fi s init and f confi g commands to initialize the flash. See Section
5.12.3.1, Section 2.4 and Section 2.5 for details.

5.12.2.2 Atlas download format

In order to download RedBoot to the Atlas board, it must be converted to the Atlas download for-
mat. There are different ways of doing this depending on which version of the developer’s kit is
shipped with the board.

The Atlas Developer’s Kit CD contains an Sr ec2f | ash utility. The source code for this utility
is part of the yanon/ yanon- src- 01. 01. t ar. gz tarball on the Dev Kit CD. The path in the
expanded tarball is yanon/ bi n/ t ool s. To use sr ec2f | ash to convert the S-record file:

% srec2flash -EL -S29 redboot.srec >redboot. dl

86

The Atlas/Malta Developer’s Kit CD contains an Sr ecconv. pl utility which requires Perl. This
utilty is part of the yanon/ yanon- src- 02. 00. t ar . gz tarball on the Dev Kit CD. The path
in the expanded tarball is yanon/ bi n/ t ool s. To use Sr ecconv to convert the S-record file:

% cp redboot ROM srec redboot ROMrec
% srecconv.pl -ES L -A 29 redboot ROM

The resulting file is named redboot ROM.{l.

5.12.3 Flash management
5.12.3.1 Additional config options

The ethernet MAC address is stored in flash manually using the f conf i g command. You can use
the YAMON set env et haddr command to print out the board ethernet address. Typically, it
1s:

00: 0d: a0: 00: xx: XX

where xx.xx 1s the hex representation of the board serial number.

5.12.3.2 Updating the secondary RedBoot image
To update the secondary RedBoot images, follow the procedures detailed in Section 4.1.2, but the
actual numbers used with the flags in the sample commands should be:

-f 0x9dc40000
-b 0x80020000
-r 0x80020000
-1 0x40000

5.12.3.3 Updating the primary RedBoot image

To update the primary RedBoot images, follow the procedures detailed in Section 4.1.3, but the
actual numbers used with the flags in the sample commands should be:

-f 0x9dc00000
-b 0x80080000
-1 0x40000

5.12.4 Additional commands

The exec command which allows the loading and execution of Linux kernels, is supported for this
architecture (see Section 2.6). The exec parameters used for MIPS boards are:

-b <addr>

Location to store command line and environment passed to kernel
-w <time>

Wait time in seconds before starting kernel
-c "params"

Parameters passed to kernel
<addr>

87

Kernel entry point, defaulting to the entry point of the last image loaded

Linux kernels on MIPS platforms expect the entry point to be called with arguments in the registers
equivalent to a C call with prototype:

void Linux(int argc, char **argv, char **envp);

RedBoot will place the appropriate data at the offset specified by the -b parameter, or by default at
address 0x80080000, and will set the arguments accordingly when calling into the kernel.

The default entry point, if no image with explicit entry point has been loaded and none is specified,
is 0x80000750.

5.12.5 Interrupts

RedBoot uses an interrupt vector table which is located at address 0x80000400. Entries in this table
are pointers to functions with this protoype:

int irg_handl er(unsigned vector, unsigned data)

On an atlas board, the vector argument is one of 25 interrupts defined in hal / m ps/ at -
| as/ VERSI OV i ncl ude/ pl f _intr. h:

#defi ne CYGNUM HAL_| NTERRUPT_SER 0
#def i ne CYGNUM_HAL_| NTERRUPT_TI MD 1
#def i ne CYGNUM HAL_I NTERRUPT 2 2
#def i ne CYGNUM HAL_| NTERRUPT_3 3
#defi ne CYGNUM HAL_| NTERRUPT_RTC 4
#def i ne CYGNUM _HAL_| NTERRUPT_COREHI 5
#def i ne CYGNUM HAL_| NTERRUPT_CORELO 6
#defi ne CYGNUM HAL_| NTERRUPT_7 7
#def i ne CYGNUM HAL_| NTERRUPT_PCl A 8
#def i ne CYGNUM HAL_| NTERRUPT_PCI B 9
#def i ne CYGNUM HAL_| NTERRUPT_PCI C 10
#def i ne CYGNUM HAL_| NTERRUPT_PCI D 11
#def i ne CYGNUM HAL_| NTERRUPT_ENUM 12
#def i ne CYGNUM HAL_| NTERRUPT_DEG 13
#def i ne CYGNUM HAL_| NTERRUPT_ATXFAI L 14
#def i ne CYGNUM HAL_| NTERRUPT_| NTA 15
#def i ne CYGNUM HAL_| NTERRUPT_| NTB 16
#def i ne CYGNUM HAL_| NTERRUPT_| NTC 17
#def i ne CYGNUM HAL_| NTERRUPT_| NTD 18
#defi ne CYGNUM HAL_| NTERRUPT_SERR 19
#def i ne CYGNUM HAL_| NTERRUPT_HWL 20
#def i ne CYGNUM_HAL_| NTERRUPT_HW2 21
#def i ne CYGNUM HAL_| NTERRUPT_HWB 22
#defi ne CYGNUM HAL_| NTERRUPT_HW 23
#def i ne CYGNUM HAL_| NTERRUPT_HW6 24

The data passed to the ISR is pulled from a data table (hal _i nt err upt _dat a) which im-
mediately follows the interrupt vector table. With 25 interrupts, the data table starts at address
0x80000464 on atlas.

An application may create a normal C function with the above prototype to be an ISR. Just poke
its address into the table at the correct index and enable the interrupt at its source. The return value
of the ISR 1is ignored by RedBoot.

88

5.12.6 Memory Maps

Memory Maps RedBoot sets up the following memory map on the Atlas board.
Physi cal Address Range Description

0x00000000 - OxO7ffffff SDRAM

0x08000000 - oOxi7ffffff PCI Menory Space
0x18000000 - Ox1bdfffff PCl 1/0O Space
0x1be00000 - Ox1bffffff System Controller
0x1c000000 - Ox1dffffff Systemflash
0x1e000000 - Oxle3fffff Monitor flash
0x1f 000000 - Ox1fbfffff FPGA

5.12.7 Resource Usage

The flash based RedBoot image occupies flash addresses 0x1fc00000 - Ox1fc1ffff. RedBoot also
reserves RAM (0x00000000 - 0x0001ftff) for RedBoot runtime uses. RAM based RedBoot con-
figurations are designed to run from RAM at physical addresses 0x00020000 - 0x0003ftff. RAM
physical addresses from 0x00040000 to the end of RAM are available for general use, such as a
temporary scratchpad for downloaded images, before they are written to flash.

5.12.8 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for
TARGET, ARCH _DIR and PLATFORM DIR on this platform are “atlas mips32 4kc” or
“atlas mips64 Skc”, “mips” and “atlas” respectively. Note that the configuration export files
supplied in the hal / m ps/ at| as/ VERSI ON m sc directory in the RedBoot source tree

should be used.

89

5.13 MIPS Malta Board with CorelLV 4Kc and CorelLV 5Kc
5.13.1 Overview

RedBoot supports both front facing serial ports and the built in ethernet port for communication
and downloads. The default serial port settings are 38400,8,N,1. RedBoot runs from and supports
flash management for the system flash region. These configurations are supported:

* RedBoot running from the system flash boot sector.
» RedBoot running from RAM with RedBoot in the system flash boot sector.

5.13.2 Initial Installation

RedBoot is installed using the code download facility built into the Malta board. See the Malta
User manual for details, and also the Malta download format in Section 5.13.2.2.

5.13.2.1 Quick download instructions

Here are quick start instructions for downloading the prebuilt RedBoot image.

1. Locate the prebuilt files in the bin directory: del et eal | . f| andr edboot _ROM f 1.

2. Make sure switch S5-1 is ON. Reset the board and verify that the LED display reads FI ash
DL.

3. Make sure your parallel port is connected to the 1284 port Of the Atlas board.
4. Send the deleteall.fl file to the parallel port to erase previous images:
% cat deleteall.fl >/dev/Ip0

When this is complete, the LED display should read Del et ed.
5. Send the RedBoot image to the board:
% cat redboot _ROM fl >/dev/I|p0
When this is complete, the LED display should show the last address programmed. This will
be something like: 1f ¢17000.
6. Change switch S5-1 to OFF and reset the board. The LED display should read “RedBoot”.

7. Runthe RedBootfi s init andfconfi g commands to initialize the flash. See Section 2.4
and Section 2.5 for details.

5.13.2.2 Malta download format

In order to download RedBoot to the Malta board, it must be converted to the Malta download
format.

The Atlas/Malta Developer’s Kit CD contains an Sr ecconv. pl utility which requires Perl. This
utility is part of the yanon/ yanon- src- 02. 00. t ar . gz tarball on the Dev Kit CD. The path
in the expanded tarball is yanon/ bi n/ t ool s. To use Sr ecconv to convert the S-record file:

% cp redboot ROM srec redboot _ROMrec
% srecconv.pl -ES L -A 29 redboot ROM

90

The resulting file is named redboot ROM.fl.

5.13.3 Flash management

5.13.3.1 Updating the secondary RedBoot image
To update the secondary RedBoot images, follow the procedures detailed in Section 4.1.2, but the
actual numbers used with the flags in the sample commands should be:

-f O0xBE020000
-b 0x80020000
-r 0x80020000
-1 0x20000

5.13.3.2 Updating the primary RedBoot image

To update the primary RedBoot images, follow the procedures detailed in Section 4.1.3, but the
actual numbers used with the flags in the sample commands should be:

-f OxBEO0000O
-b 0x80080000
-1 0x20000

5.13.4 Additional commands

The exec command which allows the loading and execution of Linux kernels, is supported for this
architecture (see Section 2.6). The exec parameters used for MIPS boards are:

-b <addr>

Location to store command line and environment passed to kernel
-w <time>

Wait time in seconds before starting kernel
-¢ "params"

Parameters passed to kernel
<addr>

Kernel entry point, defaulting to the entry point of the last image loaded

Linux kernels on MIPS platforms expect the entry point to be called with arguments in the registers
equivalent to a C call with prototype:

void Linux(int argc, char **argv, char **envp);

RedBoot will place the appropriate data at the offset specified by the -b parameter, or by default at
address 0x80080000, and will set the arguments accordingly when calling into the kernel.

The default entry point, if no image with explicit entry point has been loaded and none is specified,
is 0x80000750.

91

5.13.5 Interrupts

RedBoot uses an interrupt vector table which is located at address 0x80000200. Entries in this table
are pointers to functions with this protoype:

int irqg_handl er(unsigned vector,

On the

malta board, the vector argument

is

unsi gned data)

one of 22

hal / m ps/ mal t a/ VERSI ON/ i ncl ude/ pl f _intr. h:

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

CYGNUM HAL_| NTERRUPT SOUTH BRI DGE_I NTR

CYGNUM HAL_| NTERRUPT _SOUTH_BRI DGE_SM

CYGNUM HAL_| NTERRUPT_CBUS_UART
CYGNUM HAL_| NTERRUPT_COREHI
CYGNUM HAL_| NTERRUPT_CORELO
CYGNUM HAL_| NTERRUPT _COMPARE
CYGNUM HAL_| NTERRUPT_TI MER
CYGNUM_HAL_| NTERRUPT_KEYBOARD
CYGNUM HAL_| NTERRUPT _CASCADE
CYGNUM HAL_| NTERRUPT_TTY1
CYGNUM HAL_| NTERRUPT_TTYO
CYGNUM HAL_| NTERRUPT 11
CYGNUM HAL_| NTERRUPT _FLOPPY
CYGNUM HAL_| NTERRUPT PARALLEL

CYGNUM _HAL_| NTERRUPT_REAL_TI ME_CLOCK

CYGNUM HAL_| NTERRUPT_| 2C
CYGNUM HAL_| NTERRUPT_PCI _AB
CYGNUM HAL_| NTERRUPT_PCI _CD
CYGNUM _HAL_| NTERRUPT_MOUSE
CYGNUM _HAL_| NTERRUPT_19

CYGNUM HAL_| NTERRUPT_| DE_PRI MARY

CYGNUM HAL_| NTERRUPT | DE_SECONDARY

©Co~NOoOOWNEFO

21

interrupts

defined

in

The data passed to the ISR is pulled from a data table (hal _i nt err upt _dat a) which im-
mediately follows the interrupt vector table. With 22 interrupts, the data table starts at address
0x80000258.

An application may create a normal C function with the above prototype to be an ISR. Just poke
its address into the table at the correct index and enable the interrupt at its source. The return value
of the ISR is ignored by RedBoot.

5.13.6 Memory Maps

Memory Maps RedBoot sets up the following memory map on the Malta board.

NOTE

The virtual memory maps in this section use a C and B column to indicate whether or not the
region is cached (C) or buffered (B).

Address Range C B Description

Physi cal

0x80000000 - Ox81ffffff Y SDRAM

0x9e000000 -

92

0x9e3fffff Y N Systemflash (cached)

0x9f c00000 - Oxofffffff Y N Systemflash (mrrored)
0xa8000000 - Oxb7ffffff NN PCl Menory Space
0xb4000000 - Oxb4offfff NN Galileo System Controller
0xb8000000 - Oxb8Offfff N N Southbridge / |SA
0xb8100000 - Oxbbdfffff N N PCl 1/0O Space

0Oxbe000000 - Oxbe3fffff N N Systemflash (noncached)
Oxbf 000000 - Oxbfffffff N N Board |ogic FPGA

5.13.7 Resource Usage

The flash based RedBoot image occupies flash addresses 0xbe000000 - Oxbe01{ftf. RedBoot also
reserves RAM (0x00000000 - 0x0001ftff) for RedBoot runtime uses. RAM based RedBoot con-
figurations are designed to run from RAM at physical addresses 0x00020000 - 0x0004ftff. RAM
physical addresses from 0x00050000 to the end of RAM are available for general use, such as a
temporary scratchpad for downloaded images, before they are written to flash.

5.13.8 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for TARGET,
ARCH_DIR and PLATFORM _DIR on this platform are “malta_mips32 4kc”, “mips” and “malta”
respectively. Note that the configuration export files supplied in the hal / m ps/ mal t a/ VER-
SI OV m sc directory in the RedBoot source tree should be used.

93

5.14 PMC-Sierra MIPS RM7000 Ocelot

5.14.1 Overview

RedBoot uses the front facing serial port. The default serial port settings are 38400,8,N,1. Red-
Boot also supports ethernet. Management of onboard flash is also supported. Two basic RedBoot
configurations are supported:

* RedBoot running from the board’s flash boot sector.
* RedBoot running from RAM with RedBoot in the flash boot sector.

5.14.2 Initial Installation Method

Device programmer is used to program socketed flash parts.

5.14.3 Flash Management

5.14.3.1 Updating the primary RedBoot image

To update the primary RedBoot images, follow the procedures detailed in Section 4.1.3, loading
the primary image into RAM at 0x80100000. The actual numbers used with the flags in the sample
commands are then:

-f Oxbf c00000
-b 0x80100000
-1 0x20000

5.14.3.2 Updating the secondary RedBoot image

To update the secondary RedBoot images, follow the procedures detailed in Section 4.1.2, but the
actual numbers used with the flags in the sample commands should be:

-f Oxbfc20000
-b 0x80020000
-r 0x80020000
-1 0x20000

5.14.4 Additional commands

The exec command which allows the loading and execution of Linux kernels, is supported for this
architecture (see Section 2.6). The exec parameters used for MIPS boards are:

-b <addr>

Location to store command line and environment passed to kernel
-w <time>

Wait time in seconds before starting kernel

-¢ "params"

Parameters passed to kernel

94

<addr>
Kernel entry point, defaulting to the entry point of the last image loaded
Linux kernels on MIPS platforms expect the entry point to be called with arguments in the registers
equivalent to a C call with prototype:
voi d Linux(int argc, char **argv, char **envp);

RedBoot will place the appropriate data at the offset specified by the -b parameter, or by default at
address 0x80080000, and will set the arguments accordingly when calling into the kernel.

The default entry point, if no image with explicit entry point has been loaded and none is specified,
is 0x80000750.

5.14.5 Memory Maps
RedBoot sets up the following memory map on the Ocelot board.

Note that these addresses are accessed through kseg0/1 and thus translate to the actual address range
0x80000000-0xbfftftft, depending on the need for caching/non-caching access to the bus.

% NOTE

The virtual memory maps in this section use a C and B column to indicate whether or not the
region is cached (C) or buffered (B).

Physi cal Address Range Description

0x00000000 - OxOfffffff SDRAM

0x10000000 - Ox1offffff PCl 1/O space

0x12000000 - Ox13ffffff PCI Menory space
0x14000000 - Ox1400ffff Galileo systemcontroller
0x1c000000 - 0x1c0000ff PLD (board I ogic)

0x1f c00000 - Ox1fc7ffff flash

5.14.6 Resource Usage

The flash based RedBoot image occupies flash addresses 0x1fc00000 - Ox1fc1ffff. RedBoot also
reserves RAM (0x00000000 - 0x0001fftf) for RedBoot runtime uses.

RAM based RedBoot configurations are designed to run from RAM at physical addresses
0x00020000 - 0x0003ffff. RAM physical addresses from 0x00040000 to the end of RAM are
available for general use, such as a temporary scratchpad for downloaded images, before they are
written to flash.

5.14.7 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for
TARGET, ARCH DIR and PLATFORM DIR on this platform are “ocelot”, “mips” and
“rm7000/ocelot” respectively. Note that the configuration export files supplied in the

95

hal / m ps/ rn7000/ ocel ot/ VERSI ON mi sc directory in the RedBoot source tree should
be used.

96

5.15 Motorola PowerPC MBX

5.15.1 Overview

RedBoot uses the SMC1/COMI serial port. The default serial port settings are 38400,8,N,1. Eth-
ernet is also supported using the 10-base T connector.

Management of onboard flash is also supported. Two basic RedBoot configurations are supported:

* RedBoot running from RAM with RedBoot in the flash boot sector.
* RedBoot running from the board’s flash boot sector.

5.15.2 Initial Installation Method

Device programmer is used to program the XU1 socketed flash part (AM29F040B) with the ROM
version of RedBoot. - Use the on-board EPPC-Bug monitor to update RedBoot.

This assumes that you have EPPC-Bug in the on-board flash. This can be determined by setting up
the board according to the following instructions and powering up the board.

The EPPC-Bug prompt should appear on the SMC1 connector at 9600 baud, 8N1.

1. Set jumper 3 to 2-3 [allow XU flash to be programmed]
2. Set jumper 4 to 2-3 [boot EPPC-Bug]

If it is available, program the flash by following these steps:

1. Prepare EPPC-Bug for download:
EPPC- Bug>l 0 0O
At this point the monitor is ready for input. It will not return the prompt until the file has been
downloaded.
2. Use the terminal emulator’s ASCII download feature (or a simple clipboard copy/paste opera-
tion) to download the redboot.ppcbug file.

Note that on Linux, Minicom’s ASCII download feature seems to be broken. A workaround is
to load the file into emacs (or another editor) and copy the full contents to the clipboard. Then
press the mouse paste-button (usually the middle one) over the Minicom window.

3. Program the flash with the downloaded data:
EPPC- Bug>pf | ash 40000 60000 fc000000

4. Switch off the power, and change jumper 4 to 1-2. Turn on the power again. The board should
now boot using the newly programmed RedBoot.

To install RedBoot on a target that already has eCos GDB stubs, download the RAM version of
RedBoot and run it. Initialize the flash image directory:

RedBoot > fi init

Then download the ROM version of RedBoot and program it into flash:

RedBoot > | oad redboot ROM srec -b 0x80100000
RedBoot > fi cr RedBoot -f OxFEO00000 -b 0x00040000 -1 0x20000

97

5.15.3 Flash management

5.15.3.1 Updating the primary RedBoot image

To update the primary RedBoot images, follow the procedures detailed in Section 4.1.3, but the
actual numbers used with the flags in the sample commands should be:
-f Oxfe000000

-b 0x50000
-1 0x20000

5.15.3.2 Updating the secondary RedBoot image

To update the secondary RedBoot images, follow the procedures detailed in Section 4.1.2, but the
actual numbers used with the flags in the sample commands should be:

-f 0xfe020000

-b 0x20000

-r 0x20000
-1 0x20000

5.15.4 Special RedBoot Commands

None.

5.15.5 Memory Maps

Memory Maps RedBoot sets up the following memory map on the MBX board.
Physi cal Address Range Description

0x00000000 - 0x003fffff DRAM

0xfal00000 - Oxfal00003 LEDs

O0xf e000000 - OxfeO7ffff flash (AVMD29F040B)
Oxff 000000 - Oxffofffff MPC registers

5.15.6 Resource Usage

The flash based RedBoot image occupies flash addresses 0xfe000000 - Oxfe01ffff. RedBoot also
reserves RAM (0x00000000 - 0x0001ftff) for RedBoot runtime uses. RAM based RedBoot con-
figurations are designed to run from RAM at physical addresses 0x00020000 - 0x0004ftff. RAM
physical addresses from 0x00050000 to the end of RAM are available for general use, such as a
temporary scratchpad for downloaded images, before they are written to flash.

5.15.7 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for TAR-
GET, ARCH_DIR and PLATFORM_DIR on this platform are “mbx”, “powerpc” and “mbx” re-
spectively. Note that the configuration export files supplied in the hal / power pc/ nbx/ VER-
SI OV m sc directory in the RedBoot source tree should be used.

98

5.16 Analogue & Micro PowerPC 860T

5.16.1 Overview

RedBoot uses the SMCI1 serial port. The default serial port settings are 38400,8,N,1. Ethernet is
also supported using the RJ-45 connector.

Management of onboard flash is also supported. A single RedBoot configuration is supported:

* RedBoot running from RAM using an image copied from the flash boot sector (ROMRAM
mode).

5.16.2 Initial Installation Method
RedBoot must be installed at the A & M factory.

5.16.3 Flash management

5.16.3.1 Updating the primary RedBoot image
To update the primary RedBoot images, follow the procedures detailed in Section 4.1.3, but the
actual numbers used with the flags in the sample commands should be:

-f Oxfe000000
-b 0x50000
-1 0x30000

5.16.4 Special RedBoot Commands

None.

5.16.5 Memory Maps

Memory Maps RedBoot sets up the following memory map on the MBX board.
Physi cal Address Range Description

0x00000000 - Ox007fffff DRAM
O0xf e000000 - OxfeOfffff flash (AVD29LV8008B)
Oxff 000000 - Oxffofffff MPC registers

5.16.6 Resource Usage

The flash based RedBoot image occupies flash addresses 0xfe000000 - 0xfe02ffff. RedBoot also
reserves RAM (0x00000000 - 0x0003ffff) for RedBoot runtime uses. RAM physical addresses
from 0x00040000 to the end of RAM are available for general use, such as a temporary scratchpad
for downloaded images, before they are written to flash.

99

5.16.7 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for TARGET,
ARCH_DIR and PLATFORM_DIR on this platform are “viper”, “powerpc” and “viper” respec-
tively. Note that the configuration export files supplied in the hal / power pc/ vi per/ VER-
SI OV m sc directory in the RedBoot source tree should be used.

100

5.17 ARM Evaluator7T (e7t) board with ARM7TDMI

5.17.1 Overview

RedBoot supports both serial ports for communication and downloads. The default serial port set-
tings are 38400,8,N,1.

5.17.2 Initial Installation

RedBoot is installed using the on-board boot environment. See the user manual for full details.

5.17.3 Quick download instructions

Here are quick start instructions for downloading the prebuilt Redboot image:
* Boot the board and press ENTER:

ARM Eval uat or 7T Boot Mbnitor PreRel ease 1.00
Press ENTER within 2 seconds to stop autoboot
Boot :

* Erase the part of the flash where RedBoot will get programmed:
Boot: flasherase 01820000 10000

* Prepare to download the UU-encoded version of the RedBoot image:

Boot: downl oad 10000
Ready to downl oad. Use "transmit’ option on term na
emul ator to downl oad file.

» Either use ASCII transmit option in the terminal emulator, or on Linux, simply cat the file to
the serial port:
$ cat redboot.UU > /dev/ttySO

When complete, you should see:

Loaded file redboot. bin at address 000100000, size = 41960
Boot :

* Program the flash:
Boot: flashwite 01820000 10000 10000

* And verify that the module is available:

Boot: rommodul es

Header Base Limt
018057c8 01800000 018059e7 Boot StrapLoader v1.0 Apr 27 2000 10: 33:58
01828f 24 01820000 0182a3e8 RedBoot Apr 5 2001

Reboot the board and you should see the RedBoot banner.

5.17.4 Special RedBoot Commands

None.

101

5.17.5 Memory Maps
RedBoot sets up the following memory map on the E7T board.

% NOTE

The virtual memory maps in this section use a C and B column to indicate whether or not the
region is cached (C) or buffered (B).

Physi cal Address Range C Descri ption

B
0x00000000 - 0x0007ffff Y N SDRAM

0x03f f 0000 - OxO3ffffff NN Mcrocontroller registers
0x01820000 - 0x0187ffff N N Systemflash (mrrored)

5.17.6 Resource Usage

The flash based RedBoot image occupies flash addresses 0x0182000 - 0x0182ffff.

RedBoot also reserves RAM (0x00000000 - 0x0000ftff) for RedBoot runtime uses.

RAM physical addresses from 0x00010000 to the end of RAM are available for general use.

5.17.7 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for TARGET,
ARCH_DIR and PLATFORM_DIR on this platform are “e7t”, “arm” and “e7t” respectively. Note
that the configuration export files supplied in the hal / ar ml e7t / VERSI ON m sc directory in
the RedBoot source tree should be used.

102

5.18 ARM Integrator board with ARM7TDMI or ARM966E

5.18.1 Overview

RedBoot supports both serial ports for communication and downloads. The default serial port set-
tings are 38400,8,N,1.

5.18.2 Initial Installation

RedBoot is installed using the on-board bootPROM environment. See the user manual for full
details.

5.18.3 Quick download instructions

Here are quick start instructions for downloading the prebuilt Redboot image:

» Set DIP switch S1[1] to the ON position and reset or power the board up. You will see the
bootPROM startup message on serial port A (J14):

Initialising...

ARM boot PROM [Version 1.3] Rebuilt on Jun 26 2001 at 22:04:10
Runni ng on a Integrator Eval uation Board

Board Revision V1.0, ARWB66E-S Processor

Menmory Size is 16MBytes, Flash Size is 32MBytes

Copyright (c) ARMLimted 1999 - 2001. All rights reserved.
Board designed by ARM Linited

Har dwar e support provided at http://ww. arm com

For help on the avail able comuands type ? or h

boot Mbnitor >

e Issue the FLASH ROM load command:

boot Monitor > L
Load Motorola S-Records into flash

Del eting I mage O

The S-Record | oader only accepts input on the serial port.
Type Ctrl/C to exit |oader.

» Either use the ASCII transmit option in the terminal emulator, or on Linux, simply cat the file
to the serial port:
$ cat redboot.srec > /dev/ttySO

When complete, type Ctrl-C and you should see something similar to:

Downl oaded 5, 394 records in 81 seconds.

Overwritten block/s
0

103

boot Monitor >

» Set DIP switch S1[1] to the OFF position and reboot the board and you should see the RedBoot
banner.

5.18.4 Special RedBoot Commands

None.

5.18.5 Memory Maps

RedBoot sets up the following memory map on the Integrator board.

NOTE

The virtual memory maps in this section use a C and B column to indicate whether or not the
region is cached (C) or buffered (B).

ARM/ TDM

Physi cal Address Range C B Description

0x00000000 - 0Ox0007ffff N N SSRAM

0x00080000 oxofffffff N N SDRAM (depends on part fitted)
0x10000000 Ox1fffffff N N Systemcontrol and peripheral registers
0x20000000 ox23ffffff N N Boot ROM (contains boot Monitor)
0x24000000 ox27ffffff N N FLASH ROM (contai ns RedBoot)

0x28000000 Ox2bffffff N N SSRAM echo area

0x40000000 Ox5fffffff NN PCl Menory access w ndows

0x60000000 oxeof fffff NN PC 10 access w ndow

0x61000000 ox61ffffff N N PC config space w ndow

0x62000000 0x6200ffff N N PC bridge register w ndow

0x80000000 ox8fffffff N N SDRAM echo area (used for PCl accesses)
ARMD66E

Physi cal Address Range C B Description

0x00000000 - OxO00fffff N N SSRAM

0x00100000 OxOfffffff N N SDRAM (depends on part fitted)
0x10000000 ox1fffffff N N System control and peripheral registers
0x20000000 ox23ffffff N N Boot ROM (contains boot Mbonitor)
0x24000000 ox27ffffff N N FLASH ROM (contai ns RedBoot)

0x28000000 Ox2bffffff N N SSRAM echo area

0x40000000 Oox5fffffff NN PCl Menory access w ndows

0x60000000 ox60ffffff NN PCl 10 access w ndow

0x61000000 ox61ffffff NN PC config space w ndow

0x62000000 0x6200ffff N N PCl bridge register w ndow

0x80000000 ox8fffffff N N SDRAM echo area (used for PCl accesses)

104

5.18.6 Resource Usage
The flash based RedBoot image occupies flash addresses 0x24000000 - 0x2401 ftff.

RedBoot also reserves RAM (0x00000000 - 0x0003ftff) for RedBoot runtime uses. If ethernet
support is included, then the address range 0x00f00000 to OxOOftfttf are reserved for use by the
driver. This may be moved using the MLT.

RAM physical addresses from 0x00040000 to 0x00efffff and from 0x00100000 to the end of
SDRAM are available for general use.

5.18.7 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for TARGET,
ARCH DIR and PLATFORM DIR on this platform are “integrator” or “integrator arm9”,
“arm” and “integrator” respectively. Note that the configuration export files supplied in the
hal /arm i nt egrat or/ VERSI ON m sc directory in the RedBoot source tree should be
used.

105

5.19 ARM ARM7 PID, Dev7 and Dev9

5.19.1 Overview

RedBoot uses either of the serial ports. The default serial port settings are 38400,8,N,1. Manage-
ment of onboard flash is also supported. Two basic RedBoot configurations are supported:

* RedBoot running from the board’s flash boot sector.
* RedBoot running from RAM with RedBoot in the flash boot sector.

5.19.2 Initial Installation Method

Device programmer is used to program socketed flash parts with ROM version of RedBoot.

Alternatively, to install RedBoot on a target that already has eCos GDB stubs, download the RAM
version of RedBoot and run it. Initialize the flash image directory: fi i ni t Then download the
ROM version of RedBoot and program it into flash:

RedBoot > | oad -b 0x00040000 - m ynodem
RedBoot > fi cr RedBoot -f 0x04000000 -b 0x00040000 -1 0x20000

5.19.3 Special RedBoot Commands

None.

5.19.4 Memory Maps

RedBoot sets up the following memory map on the PID board.
Physi cal Address Range Description

0x00000000 - 0x0007ffff DRAM

0x04000000 - 0x04080000 fl ash

0x08000000 - Oxooffffff ASB Expansion

0x0a000000 - OxObffffff APB Reference Peri pheral

0x0c000000 - OxOfffffff N SA Serial, Parallel and PC Card ports

5.19.5 Resource Usage
The flash based RedBoot image occupies flash addresses 0x04000000 - 0x0401 ftft.
RedBoot also reserves RAM (0x00000000 - 0x00007fff) for RedBoot runtime uses.

RAM based RedBoot configurations are designed to run from RAM at physical addresses
0x00008000 - 0x0003ffff. RAM physical addresses from 0x00040000 to the end of RAM are
available for general use, such as a temporary scratchpad for downloaded images, before they are
written to flash.

106

5.19.6 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for TARGET,
ARCH_DIR and PLATFORM_DIR on this platform are “pid”, “arm” and “pid” respectively. Note
that the configuration export files supplied in the hal / ar m pi d/ VERSI ON/ mi sc directory in
the RedBoot source tree should be used.

107

5.20 Compaq iPAQ PocketPC

5.20.1 Overview

RedBoot supports the serial port via cradle or cable, and Compact Flash ethernet cards if fitted for
communication and downloads. The LCD touchscreen may also be used for the console, although
by default RedBoot will switch exclusively to one channel once input arrives.

The default serial port settings are 38400,8,N,1. RedBoot runs from and supports flash management
for the system flash region.

5.20.2 Initial Installation

Prebuilt images for the OSloader, redboot ROM.bin and redboot WinCE.bin images mentioned in
the instructions below are provided.

5.20.2.1 Installing RedBoot on the iPAQ using Windows/CE

The Windows/CE environment originally shipped with the iPAQ contains a hidden mini-loader,
sometimes referred to as the "Parrot" loader. This loader can be started by holding down the action
button (the joypad) while resetting the unit or when powering on. At this point, a blue bird will
appear on the LCD screen. Also at this point, a simple loader can be accessed over the serial port at
115200/8N1. Using this loader, the contents of the iPAQ flash memory can be saved to a Compact
Flash memory card.

% NOTE

We have only tested this operation with a 32Mbyte CF memory card. Given that the backup
will take 16MBytes + 1KByte, something more than a 16MByte card will be required.

Use the "r2¢" command to dump Flash contents to the CF memory card. Once this completes, Red-
Boot can be installed with no fear since the Parrot loader can be used to restore the Flash contents
at a later time.

If you expect to completely recover the state of the iPAQ Win/CE environment, then HotSync
should be run to backup all "RAM" files as well before installing RedBoot.

The next step in installing RedBoot on the iPAQ actually involves Windows/CE, which is the native
environment on the unit. Using WinCE, you need to install an application which will run a RAM
based version of RedBoot. Once this is installed and running, RedBoot can be used to update the
flash with a native/ROM version of RedBoot.

» Using ActiveSync, copy the file OSloader to your iPAQ.

» Using ActiveSync, copy the file redboot WinCE.bin to the iPAQ as bootldr in its root directory.
Note: this is not the top level folder displayed by Windows (Mobile Device), but rather the "My
Pocket PC’ folder within it.

108

* Execute OSloader. If you didn’t create a shortcut, then you will have to poke around for it using
the WinCE file explorer.

e Choose the Tools->BootLdr->Run after loading from file menu item.

At this point, the RAM based version of RedBoot should be running. You should be able to return
to this point by just executing the last two steps of the previous process if necessary.

5.20.2.2 Installing RedBoot on the iPAQ - using the Compaq boot
loader

This method of installation is no longer supported. If you have previously installed either the
Compaq boot loader or older versions of RedBoot, restore the Win/CE environment and proceed
as outlined above.

5.20.2.3 Setting up and testing RedBoot

When RedBoot first comes up, it will want to initialize its LCD touch screen parameters. It does
this by displaying a keyboard graphic and asks you to press certain keys. Using the stylus, press
and hold until the prompt is withdrawn. When you lift the stylus, RedBoot will continue with the
next calibration.

Once the LCD touchscreen has been calibrated, RedBoot will start. The calibration step can be
skipped by pressing the return/abort button on the unit (right most button with a curved arrow icon).
Additionally, the unit will assume default values if the screen is not touched within about 15 sec-
onds.

Once RedBoot has started, you should get information similar to this on the LCD screen. It will
also appear on the serial port at 38400,8,N,1.

RedBoot (tm) bootstrap and debug environnent [ROM
Red Hat certified release, version RL.xx - built 06:17:41, Mar 19 2001
Pl atform Conpaq i PAQ Pocket PC (StrongARM 1110)

Copyright (C) 2000, 2001, Red Hat, Inc.

RAM 0x00000000- 0x01f c0000, 0x0001f 200- 0x01f 70000 avail abl e
FLASH: 0x50000000 - 0x51000000, 64 bl ocks of 0x00040000 bytes each.

Since the LCD touchscreen is only 30 characters wide, some of this data will be off the right hand
side of the display. The joypad may be used to pan left and right in order to see the full lines.

If you have a Compact Flash ethernet card, RedBoot should find it. You’ll need to have BOOTP
enabled for this unit (see your sysadmin for details). If it does, it will print a message like:

... Waiting for network card: .Ready!
Socket Communi cations Inc: CF+ LPE Revision E 08/ 04/99
I P: 192.168.1.34, Default server: 192.168.1.101

5.20.2.4 Installing RedBoot permanently

Once you are satisfied with the setup and that RedBoot is operating properly in your environment,
you can set up your iPAQ unit to have RedBoot be the bootstrap application.

109

» -

CAUTION

This step will destroy your Windows/CE environment.

Before you take this step, it is strongly recommended you save your WinCE FLASH contents
as outlined above using the "parrot" loader, or by using the Compaq OSloader:

» Using OSloader on the iPAQ, select the Tools->Flash->Save to files.... menu item.
* Four (4) files, 4MB each in size will be created.

» After each file is created, copy the file to your computer, then delete the file from the iPAQ
to make room in the WinCE ramdisk for the next file.

You will need to download the version of RedBoot designed as the ROM bootstrap. Then install it
permanently using these commands:

RedBoot >
RedBoot >
RedBoot >
RedBoot >
RedBoot >
RedBoot >
RedBoot >

lo -r -b 0x100000 /tftpboot/redboot_ ROM bin
fi loc -f 0Ox50000000 -1 0x40000

fis init

fi unl -f 0x50040000 -1 0x40000

fi cr RedBoot -b 0x100000

fi loc -f 0x50040000 -1 0x40000

reset

WARNING

You must type these commands exactly! Failure to do so may render your iPAQ totally
useless. Once you’ve done this, RedBoot should come up every time you reset.

5.20.2.5 Restoring Windows/CE

To restore Windows/CE from the backup taken in Section 5.20.2.4, visit http://www.hand-
helds.org/projects/wincerestoration.html for directions.

5.20.3 Flash Management

5.20.3.1 Updating the secondary RedBoot image

To update the secondary RedBoot images, follow the procedures detailed in Section 4.1.2, relying
on default location and size of the image. It is also possible to explicitly specify the options - the
appropriate options for the iPAQ are:

-f 0x50080000
-b 0x00020000
-r 0x00020000
-e 0x00020040
-1 0x40000

110

http://www.handhelds.org/projects/wincerestoration.html

When updating the image, the flash should be unlocked before programming, and relocked after-
wards. This is done with the commands:

fis unlock -f 0x50080000 -1 0x40000

and
fis lock -f 0x50080000 -1 0x40000

5.20.3.2 Updating the primary RedBoot image

To update the primary RedBoot images, follow the procedures detailed in Section 4.1.3, relying
on default location and size of the image. It is also possible to explicitly specify the options - the
appropriate options for the iPAQ are:

-f 0x50040000
-b 0x00100000
-1 0x40000

When updating the image, the flash should be unlocked before programming, and relocked after-
wards. This is done with the commands:

fis unlock -f 0x50040000 -1 0x40000

and
fis lock -f 0x50040000 -1 0x40000

5.20.4 Additional commands

The exec command which allows the loading and execution of Linux kernels, is supported for this
board (see Section 2.6). The exec parameters used for the iPAQ are:

-b <addr>
Location Linux kernel was loaded to
-1 <len>
Length of kernel
-c "params"
Parameters passed to kernel
-r <addr>
“initrd’ ramdisk location
-s <len>
Length of initrd ramdisk

Linux kernels may be run on the iPAQ using the sources from the anonymous CVS repository at the
Handhelds project (http://www.handhelds.org/) with the el i nux. pat ch patch file applied. This
file can be found in the m sc/ subdirectory of the iPAQ platform HAL in the RedBoot sources,
normally hal / ar m sal1x0/ i paq/ VERSI ON/ m sc/

On the iPAQ (and indeed all SA11x0 platforms), Linux expects to be loaded at address 0xC0008000
and the entry point is also at 0xC0008000.

111

http://www.handhelds.org/

5.20.5 Memory Maps

RedBoot sets up the following memory map on the iPAQ: The first level page table is located at
physical address 0xC0004000. No second level tables are used.

% NOTE

The virtual memory maps in this section use a C and B column to indicate whether or not the
region is cached (C) or buffered (B).

Physi cal Address Range

Description

0x00000000 - OxO1ffffff 16Mb to 32Mb FLASH (nCSO) [organi zed as bel ow
0x000000 - 0Ox0003ffff Parrot Loader
0x040000 - 0Ox0007ffff RedBoot
Oxf 80000 - OxO0Of bffff Fconfig data
Oxfc0000 - OxOOf fffff FI'S directory
0x30000000 - Ox3fffffff Conpact Fl ash
0x48000000 - Ox4bffffff i PAQ internal registers
0x80000000 - Oxbfffffff SA-1110 Internal Registers
0xc0000000 - Oxciffffff DRAM Bank 0 - 32Mo SDRAM
0xe0000000 - Oxe7ffffff Cache Cl ean
Vi rtual Address Range C B Description
0x00000000 - OxO1ffffff Y Y DRAM- 32Mo
0x30000000 - Ox3fffffff N N Conpact Flash
0x48000000 - Ox4bffffff N N iPAQ internal registers
0x50000000 - Ox51ffffff Y Y Up to 32Mdo FLASH (nCSO)
0x80000000 - Oxbfffffff N N SA-1110 Internal Registers
0xc0000000 - Oxciffffff N Y DRAM Bank 0: 32Mo
0xe0000000 - Oxe7ffffff Y Y Cache O ean

5.20.6 Resource Usage

The flash based RedBoot image occupies flash addresses 0x50040000 - 0x5007ffff. RedBoot also
reserves RAM (0x00000000 - 0x0001ftff) for RedBoot runtime uses. RAM based RedBoot config-
urations are designed to run from RAM at virtual addresses 0x00020000 - 0x0005ffff. RAM virtual
addresses from 0x00060000 to the end of RAM are available for general use, such as a temporary
scratchpad for downloaded images, before they are written to flash. An exception is RAM from
0x01F70000 - 0xO1FFFFFF which is reserved for use by the LCD display.

5.20.7 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for TARGET,
ARCH_DIR and PLATFORM_DIR on this platform are “ipaq”, “arm” and “sal 1x0/ipaq” respec-
tively. Note that the configuration export files supplied in the hal / ar mf sal11x0/ i paqg/ VER-
SI OV m sc directory in the RedBoot source tree should be used.

112

5.21 Cirrus Logic EP7xxx (EDB7211, EDB7212, EDB7312)
5.21.1 Overview

RedBoot supports both serial ports on the board and the ethernet port. The default serial port set-
tings are 38400,8,N,1. RedBoot also supports flash management on the EDB7xxx for the NOR
flash only. Two basic RedBoot configurations are supported:

* RedBoot running from the board’s flash boot sector.
* RedBoot running from RAM with RedBoot in the flash boot sector.
« EDB7312 only: RedBoot running from RAM copied directly from the flash boot sector.

5.21.2 Initial Installation Method

A Windows or Linux utility is used to program flash using serial port #1 via on-chip programming
firmware. See board documentation for details on in situ flash programming.

5.21.3 Flash management

5.21.3.1 Updating the primary RedBoot image
To update the primary RedBoot images, follow the procedures detailed in Section 4.1.3, but the
actual numbers used with the flags in the sample commands should be:

-f O0xE0000000
-b 0x40000
-1 0x40000

5.21.3.2 Updating the secondary RedBoot image

To update the secondary RedBoot images, follow the procedures detailed in Section 4.1.2, but the
actual numbers used with the flags in the sample commands should be:

-f OxE0040000
-b 0x40000
-r 0x40000
-1 0x40000

% NOTE

On the EDB7312, because the primary RedBoot image runs in RAM and not FLASH, it can
be updated directly without use of the separate RAM based version.

5.21.4 Special RedBoot Commands

None.

113

5.21.5 Memory Maps
The MMU page tables and LCD display buffer, if enabled, are located at the end of DRAM.

NOTE

The virtual memory maps in this section use a C and B column to indicate whether or not the

region is cached (C) or buffered (B).

Physi cal Address Range Description

0x00000000 - OxO1ffffff NOR Fl ash (EDB7211, EDB7212)
0x00000000 - OxOOffffff NOR Fl ash (EDB7312)
0x10000000 - Ox11ffffff NAND Fl ash

0x20000000 Ox2f ffffff Expansi on 2

0x30000000 Ox3fffffff Expansi on 3

0x40000000 - Ox4fffffff PCMCI A O

0x50000000 - Ox5fffffff PCMCI A 1

0x60000000 - 0x600007f f On-chi p SRAM

0x80000000 Ox8fffffff I/Oregisters

0xc0000000 - Oxciffffff DRAM (EDB7211, EDB7212)
0xc0000000 - OxcOffffff DRAM (EDB7312)

Vi rtual Address Range C B Description

0x00000000 - OxO1ffffff Y Y DRAM

0x00000000 - OxoOfcffff Y Y DRAM (EDB7312)

0x20000000 ox2fffffff N N Expansion 2

0x30000000 ox3fffffff N N Expansion 3

0x40000000 - Oox4fffffff NN PCMCIA O

0x50000000 - Ox5fffffff NN PCMCIA 1

0x60000000 - 0x600007ff Y Y On-chip SRAM

0x80000000 ox8fffffff NN 1/Oregisters

0xc0000000 OxcO001ffff N Y LCD buffer (if configured)
0xe0000000 - Oxelffffff Y Y NOR Flash (EDB7211, EDB7212)
0xe0000000 - OxeOffffff Y Y NOR Flash (EDB7312)

0xf 0000000 - Oxfiffffff Y Y NAND Flash

The flash based RedBoot image occupies virtual addresses 0xe0000000 - OxeOQO03ffff.

5.21.6 Resource Usage

The RAM based RedBoot image occupies RAM addresses 0x40000 - Ox7ffff. The ROM-
RAM based RedBoot image (EDB7312 only) occupies RAM addresses 0x1000 - Ox3ffff.
RAM addresses start at 0X80000 and continue up to the top of the installed physical RAM size,
less the memory reserved for MMU page tables (0x9000 bytes) and the LCD display buffer, if en-
abled (0x20000 bytes). The RAM is available for general use such as a temporary scratchpad for
downloaded images before they are written to flash.

The EP7xxx timer #2 is used as a polled timer to provide timeout support for network and XModem
file transfers.

114

5.21.7 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for ARCH_DIR
and PLATFORM_DIR on this platform are “arm” and “edb7xxx” respectively. The value for TAR-
GET is either “edb7211” or “edb7212” or “edb7312”, depending on the desired platform. Note that
the configuration export files supplied in the hal / ar m edb7xxx/ VERSI OV m sc directory
in the RedBoot source tree should be used, and the correct edb7XXX variant chosen.

115

5.22 Bright Star Engineering commEngine and nanoEngine

5.22.1 Overview

RedBoot supports a serial port and the built in ethernet port for communication and downloads. The
default serial port settings are 38400,8,N,1. RedBoot runs from and supports flash management for
the system flash region. These configurations are supported:

* RedBoot running from the first free block at 0x40000
* RedBoot running from RAM

5.22.2 Initial Installation

Unlike other targets, the nanoEngine comes equipped with boot firmware which you cannot modify.
See chapter 5, "nanoEngine Firmware" of the nanoEngine Hardware Reference Manual (we refer
to "July 17, 2000 Rev 0.6") from Bright Star Engineering.

Because of this, eCos, and therefore Redboot, only supports RAM and POST startup types, rather
than the more usual ROM, RAM and optionally, POST.

Briefly, the POST-startup RedBoot image lives in flash following the BSE firmware. The BSE
firmware is configured, using its standard boot cnd parameter, to jump into the RedBoot image
at startup.

5.22.3 Download Instructions

You can perform the initial load of the POST-startup RedBoot image into flash using the BSE
firmware’s | oad command. This will load a binary file, using TFTP, and program it into flash
in one operation. Because no memory management is used in the BSE firmware, flash is mapped
from address zero upwards, so the address for the RedBoot POST image is 0x40000. You must use
the binary version of RedBoot for this, r edboot - post . bi n.

This assumes you have set up the other BSE firmware config parameters such that it can commu-
nicate over your network to your TFTP server.

>| oad /tftpboot/redboot-post.hbin 40000
loading ... erasing blk at 00040000
erasing blk at 00050000

94168 bytes | oaded cksum 00008579
done

>

> set bootcnd "go 40000"

> get

nmyip = 10. 16. 19. 198

net mask = 255. 255. 255.0

eth =0

gateway = 10. 16. 19. 66

serverip = 10.16.19. 66

boot cnd = go 40000

>

116

NOTE

the BSE firmware runs its serial 10 at 9600 Baud; RedBoot runs instead at 38400 Baud. You
must select the right baud rate in your terminal program to be able to set up the BSE firmware.

After a reset, the BSE firmware will print

Boot: BSE 2000 Sep 12 2000 14:00: 30
aut oboot: "go 40000" [hit ESC to abort]

and then RedBoot starts, switching to 38400 Baud.

Once you have installed a bootable RedBoot in the system in this manner, we advise re-installing
using the generic method described in Chapter 4, Updating RedBoot in order that the Flash Image
System contains an appropriate description of the flash entries.

5.22.4 Cohabiting with POST in Flash

The configuration export file named r edboot _POST. ecmconfigures redboot to build for exe-
cution at address 0x50040000 (or, during bootup, 0x00040000). This is to allow power-on self-test
(POST) code or immutable firmware to live in the lower addresses of the flash and to run before
RedBoot gets control. The assumption is that RedBoot will be entered at its base address in phys-
ical memory, that is 0x00040000.

Alternatively, for testing, you can call it in an already running system by using go 0x50040040
at another RedBoot prompt, or a branch to that address. The address is where the reset vector points,
and is reported by RedBoot’s t ft p | oad command and listed by the fi s |i St command,
amongst other places.

Using the POST configuration enables a normal config option which causes linking and initializa-
tion against memory layout files called "...post..." rather than "...rom..." or "...ram..." in the i n-
cl ude/ pkgconf directory. Specifically:

665 Feb 9 17:57 include/ pkgconf/mt_arm sallx0_nano_post. h

839 Feb 9 17:57 include/ pkgconf/mt_arm sallx0_nano_post. | di
585 Feb 9 17:57 include/ pkgconf/mt_arm sallx0_nano_post.mt

It is these you should edit if you wish to move that execution address from 0x50040000 in the
POST configuration. Startup type naturally remains ROM in this configuration.

Because the nanoEngine contains immutable boot firmware at the start of flash, RedBoot for this
target is configured to reserve that area in the Flash Image System, and to create by default an entry
for the POST startup RedBoot.

RedBoot > fis |ist

Nare FLASH addr Mem addr Length Entry point
(reserved) 0x50000000 0x50000000 0x00040000 0x00000000
RedBoot [post] 0x50040000 0x00100000 0x00020000 0x50040040
RedBoot [backup] 0x50060000 0x00020000 0x00020000 0x00020040
RedBoot config 0x503E0000 0x503E0000 0x00010000 0x00000000
FI'S directory 0x503F0000 0x503F0000 0x00010000 0x00000000

RedBoot >

117

The entry "(reserved)" ensures that the FIS cannot attempt to overwrite the BSE firmware, thus
ensuring that the board remains bootable and recoverable even after installing a broken RedBoot
image.

5.22.5 Special RedBoot Commands

The nanoEngine/commEngine has one or two Intel 182559 Ethernet controllers installed, but these
have no associated serial EEPROM in which to record their Ethernet Station Address (ESA, or
MAC address). The BSE firmware records an ESA for the device it uses, but this information is
not available to RedBoot; we cannot share it.

To keep the ESAs for the two ethernet interfaces, two new items of RedBoot configuration data are
introduced. You can list them with the RedBoot command f confi g -1 thus:

RedBoot > fconfig -1

Run script at boot: false

Use BOOTP for network configuration: false
Local | P address: 10.16.19.91
Default server |IP address: 10.16.19.66

Net wor k hardware address [MAC] for ethO: 0x00: OxB5: O0xEOQ: OxB5: OxEQ: 0x99
Net wor k hardwar e address [MAC] for ethl: 0x00: 0xB5: OxEO: OxB5: OXEO: 0x9A
GDB connection port: 9000
Net wor k debug at boot tine:
RedBoot >

fal se

You should set them before running RedBoot or eCos applications with the board connected to a
network. The f conf i g command can be used as for any configuration data item; the entire ESA
is entered in one line.

5.22.6 Memory Maps

The first level page table is located at physical address 0xc0004000. No second level tables are
used.

NOTE

The virtual memory maps in this section use a C and B column to indicate whether or not the
region is cached (C) or buffered (B).

Physi cal Address Range Description

0x00000000 Ox003fffff 4Mb FLASH (nCS0)

0x18000000 Ox18ffffff Internal PCl bus - 2 x i82559 ethernet
0x40000000 Ox4fffffff External 10 or PCl bus

0x80000000 Oxbfffffff SA-1110 Internal Registers

0xc0000000 Oxc7ffffff DRAM Bank 0 - 32Mb SDRAM

0xc8000000 Oxcfffffff DRAM Bank 1 - enpty

0xe0000000 Oxe7ffffff Cache C ean

Vi rtual Address Range C B Description

0x00000000 - OxO001fffff Y Y DRAM- 8M to 32M

0x18000000 - Ox180fffff N N Internal PCl bus - 2 x i82559 ethernet
0x40000000 - oOx4fffffff N N External 10 or PCl bus

118

0x50000000 - Oxb5iffffff
0x80000000 - Oxbfffffff
0xc0000000 - OxcOffffff
0xc8000000 - Oxc8ffffff
0xe0000000 - Oxe7ffffff

The FLASH based RedBoot POST-startup image occupies virtual addresses 0x50040000 -
0x5005ffft.

The ethernet devices use a "PCI window" to communicate with the CPU. This is 1Mb of SDRAM
which is shared with the ethernet devices that are on the PCI bus. It is neither cached nor buffered,
to ensure that CPU and PCI accesses see correct data in the correct order. By default it is configured
to be megabyte number 30, at addresses 0x01e00000-0x01eftftf. This can be modified, and indeed
must be, if less than 32Mb of SDRAM is installed, via the memory layout tool, or by moving
the section __pci _w ndowreferred to by symbols CYGVEM_SECTI ON_pci _w ndow* in the
linker script.

Though the nanoEngine ships with 32Mb of SDRAM all attached to DRAM bank 0, the code can
cope with any of these combinations also; "2 x " in this context means one device in each DRAM
Bank.

1 x 8M = 8M 2 x 8Wvb = 16M
1 x 16M = 16M 2 x 16Mo = 32Mb

Up to 32Mo FLASH (nCS0)

SA-1110 Internal Registers
DRAM Bank 0: 8 or 16M

DRAM Bank 1: 8 or 16Mo or absent
Cache d ean

<zzz<
<<=<zZ<

All are programmed the same in the memory controller.

Startup code detects which is fitted and programs the memory map accordingly. If the device(s)
is 8Mb, then there are gaps in the physical memory map, because a high order address bit is not
connected. The gaps are the higher 2Mb out of every 4Mb. The SA11x0 OS timer is used as a
polled timer to provide timeout support within RedBoot.

5.22.7 Nano Platform Port

The nano is in the set of SA11X0-based platforms. It uses the arm architectural HAL, the sal1x0
variant HAL, plus the nano platform hal. These are components

CYGPKG_HAL_ARM hal / arm ar ch/

CYGPKG_HAL_ARM SA11X0 hal / ar m sal1x0/ var

CYGPKG_HAL_ARM SA11X0_NANO hal / ar m sal1x0/ nano
respectively.

The target name is "nano" which includes all these, plus the ethernet driver packages, flash driver,
and so on.

5.22.8 Ethernet Driver

The ethernet driver is in two parts:

A generic ether driver for Intel i8255x series devices, specifically the 182559, is devs/ et h/ i n-
tel /i 82559. Its package name is CYGPKG_DEVS_ETH | NTEL_| 82559.

The platform-specific ether driver is devs/ et h/ ar m nano. Its package is CYG
PKG_DEVS_ETH_ARM NANQO. This tells the generic driver the address in IO memory of the

119

chip, for example, and other configuration details. This driver picks up the ESA from RedBoot’s
configuration data - unless configured to use a static ESA in the usual manner.

5.22.9 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for TARGET,
ARCH_DIR and PLATFORM_DIR on this platform are “nano”, “arm” and “sal 1x0/nano” respec-
tively. Note that the configuration export files supplied in the hal / ar ml sal11x0/ nano/ VER-
SI OV m sc directory in the RedBoot source tree should be used.

120

5.23 x86 Based PC
5.23.1 Overview

RedBoot supports two serial ports and an Intel 182559 based ethernet card (for example an Intel
EtherExpress Pro 10/100) for communication and downloads. The default serial port settings are
38400,8,N,1. RedBoot runs from a boot floppy disk installed in the A: drive of the PC.

5.23.2 Initial Installation

RedBoot takes the form of a self-booting image that must be written onto a formatted floppy disk.
The process will erase any file system or data that already exists on that disk, so proceed with
caution.
For Red Hat Linux users, this can be done by:

$ dd conv=sync if=install/bin/redboot.bin of=/dev/fd0OH1440
For NT Cygwin users, this can be done by first ensuring that the raw floppy device is mounted as

/ dev/ f dO. To check if this is the case, type the command nmount at the Cygwin bash prompt. If
the floppy drive is already mounted, it will be listed as something similar to the following line:

\\.\a: /dev/fdO user binnode

If this line is not listed, then mount the floppy drive using the command:
$ mount -f -b //./a: /dev/fdO

To actually install the boot image on the floppy, use the command:
$ dd conv=sync if=install/bin/redboot.bin of=/dev/fd0

Insert this floppy in the A: drive of the PC to be used as a target and ensure that the BIOS is con-
figured to boot from A: by default. On reset, the PC will boot from the floppy and be ready to be
debugged via either serial line, or via the ethernet interface if it is installed.

% NOTE

Unreliable floppy media may cause the write to silently fail. This can be determined if the
RedBoot image does not correctly boot. In such cases, the floppy should be (unconditionally)
reformatted using the f df or mat command on Linux, or f ormat a: / u on DOS/Win-
dows.

5.23.3 Flash management
PC RedBoot does not support any FLASH commands.

5.23.4 Special RedBoot Commands

None.

121

5.23.5 Memory Maps

All selectors are initialized to map the entire 32-bit address space in the familiar protected mode
flat model. Page translation is not used. RAM up to 640K is mapped to 0x0 to 0xa0000. RAM

above 640K is mapped from address 0x100000 upwards. Space is reserved between 0xa0000 and
0x100000 for option ROMs and the BIOS.

5.23.6 Resource Usage

RedBoot is loaded into RAM at address 0x2000 and reserves all RAM below 0xa0000 for its own
use. RAM applications should load from address 0x100000 upwards.

5.23.7 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for TARGET,
ARCH_DIR and PLATFORM_DIR on this platform are “pc”, “1386” and “pc” respectively. Note
that the configuration export files supplied in the hal /i 386/ pc/ VERSI ON/ mi sc directory in
the RedBoot source tree should be used. In particular, the r edboot _FLOPPY. ecmfile is used
for building a version of RedBoot suitable for booting off a floppy disk.

122

5.24 Samsung CalmRISC16 Core Evaluation Board
5.24.1 Overview

The Samsung CalmRISC16 evaluation platform consists of two boards connected by a ribbon cable.
One board contains the CPU core and memory. The other board is called the MDSChip board
and provides the host interface. The calmRISC16 is a harvard architecture with separate 22-bit
program and data addresses. The instruction set provides no instruction for writing to program
memory. The MDSChip board firmware (called CalmBreaker) provides a pseudo register interface
so that code running on the core has access to a serial channel and a mechanism to write to program
memory. The serial channel is fixed at 57600-8-N-1 by the firmware. The CalmBreaker firmware
also provides a serial protocol which allows a host to download a program and to start or stop the
core board.

Only a ROM startup RedBoot configuration is supported.

5.24.2 Initial Installation Method

The CalmRISC16 core is controlled through the MDSChip board. There is no non-volatile storage
available for RedBoot, so RedBoot must be downloaded to the board on every power cycle. A small
utility program is used to download S-record files to the eval board. Sources and build instructions
for this utility are located in the RedBoot sources in:

.../ packages/ hal / cal nri sc16/ ceb/ current/support

To download the RedBoot image, first press the reset button on the MDSChip board. The green
’Run’ LED on the core board should go off. Now, use the utility to download the RedBoot image
with:

% cal nbreaker -p /dev/itermb --reset --srec-code -f redboot.elf

Note that the ’-p /dev/term/b’ specifies the serial port to use and will vary from system to syetm.
The download will take about two minutes. After it finishes, start RedBoot with:

% cal nbreaker -p /dev/itermb --run

The ’Run’ LED on the core board should be on. Connecting to the MDSboard with a terminal and
typing enter should result in RedBoot reprinting the command prompt.

5.24.3 Special RedBoot Commands

None.

5.24.4 Special Note on Serial Channel

The MDSChip board uses a relatively slow microcontroller to provide the pseudo-register interface
to the core board. This pseudo-register interface provides access to the serial channel and write
access to program memory. Those interfaces are slow and the serial channel is easily overrun by
a fast host. For this reason, GDB must be told to limit the size of code download packets to avoid
serial overrun. This is done with the following GDB command:

123

(gdb) set downl oad-write-size 25

5.24.5 Resource Usage

The RedBoot image occupies program addresses 0x000000 - 0x00ftff and data addresses 0x000000
- OxOOffft.

5.24.6 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for TARGET,
ARCH DIR and PLATFORM DIR on this platform are “calml6 ceb”, “calmrisc16” and
“ceb” respectively. Note that the configuration export files supplied in the hal / cal m
ri sc16/ ceb/ VERSI ON m sc directory in the RedBoot source tree should be used.

124

5.25 Samsung CalmRISC32 Core Evaluation Board
5.25.1 Overview

The Samsung CalmRISC32 evaluation platform consists of two boards connected by a ribbon cable.
One board contains the CPU core and memory. The other board is called the MDSChip board
and provides the host interface. The calmRISC32 is a harvard architecture with separate 32-bit
program and data addresses. The instruction set provides no instruction for writing to program
memory. The MDSChip board firmware (called CalmBreaker) provides a pseudo register interface
so that code running on the core has access to a serial channel and a mechanism to write to program
memory. The serial channel is fixed at 57600-8-N-1 by the firmware. The CalmBreaker firmware
also provides a serial protocol which allows a host to download a program and to start or stop the
core board.

Only a ROM startup RedBoot configuration is supported.

5.25.2 Initial Installation Method

The calmRISC32 core is controlled through the MDSChip board. There is no non-volatile storage
available for RedBoot, so RedBoot must be downloaded to the board on every power cycle. A small
utility program is used to download S-record files to the eval board. Sources and build instructions
for this utility are located in the RedBoot sources in:

.../ packages/ hal / cal nri sc32/ ceb/ current/support

To download the RedBoot image, first press the reset button on the MDSChip board. The green
’Run’ LED on the core board should go off. Now, use the utility to download the RedBoot image
with:

% cal nbreaker -p /dev/itermb --reset --srec-code -f redboot.elf

Note that the ’-p /dev/term/b’ specifies the serial port to use and will vary from system to syetm.
The download will take about two minutes. After it finishes, start RedBoot with:

% cal nbreaker -p /dev/itermb --run

The ’Run’ LED on the core board should be on. Connecting to the MDSboard with a terminal and
typing enter should result in RedBoot reprinting the command prompt.

5.25.3 Special RedBoot Commands

None.

5.25.4 Special Note on Serial Channel

The MDSChip board uses a relatively slow microcontroller to provide the pseudo-register interface
to the core board. This pseudo-register interface provides access to the serial channel and write
access to program memory. Those interfaces are slow and the serial channel is easily overrun by
a fast host. For this reason, GDB must be told to limit the size of code download packets to avoid
serial overrun. This is done with the following GDB command:

125

(gdb) set downl oad-write-size 25

5.25.5 Resource Usage

The RedBoot image occupies program addresses 0x00000000 - 0x0000ffff and data addresses
0x00000000 - 0x0000ftft.

5.25.6 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for TARGET,
ARCH DIR and PLATFORM DIR on this platform are “calm32 ceb”, “calmrisc32” and
“ceb” respectively. Note that the configuration export files supplied in the hal / cal m
ri sc32/ ceb/ VERSI ON m sc directory in the RedBoot source tree should be used.

126

5.26 Hitachi EDK7708 (edk7708)

5.26.1 Overview
RedBoot uses the serial port. The default serial port settings are 38400,8,N,1.

Management of onboard flash is also supported. Two basic RedBoot configurations are supported:

* RedBoot running from RAM with RedBoot in the flash boot sector.
* RedBoot running from the board’s flash boot sector.

5.26.2 Initial Installation Method

Program the ROM RedBoot image into flash using an eprom programmer.

5.26.3 Flash management

5.26.3.1 Updating the primary RedBoot image

To update the primary RedBoot images, follow the procedures detailed in Section 4.1.3, but the
actual numbers used with the flags in the sample commands should be:
-f 0x80000000

-b 0x88040000
-1 0x20000

5.26.4 Memory Maps

RedBoot sets up the following memory map on the EDK7708 board.
Physi cal Address Range Description

0x80000000 - 0x8001ffff Flash (AT29LV1024)
0x88000000 - 0x881fffff DRAM

0xa4000000 - 0xa40000ff LED ON

0xb8000000 - 0xb80000ff LED ON

5.26.5 Resource Usage

The flash based RedBoot image occupies flash addresses 0x80000000 - 0x8001ffff. RedBoot also
reserves RAM (0x88000000 - 0x8800fftf) for RedBoot runtime uses. RAM based RedBoot con-
figurations are designed to run from RAM at physical addresses 0x88010000 - 0x8803ffff. RAM
physical addresses from 0x88040000 to the end of RAM are available for general use, such as a
temporary scratchpad for downloaded images, before they are written to flash.

5.26.6 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for TAR-
GET, ARCH_DIR and PLATFORM _DIR on this platform are “edk7708”, “sh” and “edk7708”
respectively. Note that the configuration export files supplied in the hal / sh/ edk7708/ VER-
SI OV m sc directory in the RedBoot source tree should be used.

127

5.27 Hitachi Solution Engine 77X9 (SE77X9)

5.27.1 Overview

This description covers the MS7729SEO1 and MS7709SSE0101 variants. See Section 5.28 for
instructions for the MS7709SEQ1 variant.

RedBoot uses the COM1 and COM2 serial ports. The default serial port settings are 38400,8,N,1.
Ethernet is also supported using the 10-base T connector.

Management of onboard flash is also supported. Two basic RedBoot configurations are supported:

* RedBoot running from RAM with RedBoot in the flash boot sector.
* RedBoot running from the board’s flash boot sector.

5.27.2 Initial Installation Method

The Solution Engine ships with the Hitachi boot monitor in EPROM which allows for initial pro-
gramming of RedBoot:

1. Set switches SW4-3 and SW4-4 to ON [boot from EPROM]

2. Connect a serial cable to COM2 and power up the board.

3. After the boot monitor banner, invoke the flash download/program command:
Ready >fl

4. The monitor should now ask for input:

Fl ash ROM data copy to RAM
Pl ease Send A S-format Record

At this point copy the RedBoot ROM SREC file to the serial port:
$ cat redboot _ROM eprom srec > /dev/ttySO

Eventually you should see something like

Start Addrs = A1000000
End Addrs = ALXXXXXX
Transfer conpl ete

from the monitor.

5. Set switch SW4-3 to OFF [boot from flash] and reboot the board. You should now see the
RedBoot banner.

5.27.3 Flash management

5.27.3.1 Updating the primary RedBoot image

To update the primary RedBoot images, follow the procedures detailed in Section 4.1.3, but the
actual numbers used with the flags in the sample commands should be:

-f 0x80000000
-b 0x8c080000
-1 0x20000

128

5.27.3.2 Updating the secondary RedBoot image

To update the secondary RedBoot images, follow the procedures detailed in Section 4.1.2, but the
actual numbers used with the flags in the sample commands should be:

-f 0x80020000
-b 0x8c020000
-r 0x8c020000
-1 0x20000

5.27.4 Special RedBoot Commands

The exec command which allows the loading and execution of Linux kernels is supported for this
board (see Section 2.6). The exec parameters used for the SE77x9 are:

-b <addr>

Parameter block address. This is normally the first page of the kernel image and defaults to
0x8c101000

-i <addr>

Start address of initrd image
-j <size>

Size of initrd image
-c "args"

Kernel arguments string
-m <flags>

Mount rdonly flags. If set to a non-zero value the root partition will be mounted read-only.
-f <flags>

RAM disk flags. Should normally be 0x4000
-r <device number>

Root device specification. /dev/ram is 0x0101
-1 <type>

Loader type

Finally the kernel entry address can be specified as an optional argument. The default is
0x8c102000

On the SE77x9, Linux expects to be loaded at address 0x8c101000 with the entry point at
0x8c102000. This is configurable in the kernel using the CONFIG_ MEMORY _ START option.

5.27.5 Memory Maps

RedBoot sets up the following memory map on the SE77x9 board.
Physi cal Address Range Description

129

0x80000000 -
0x81000000 -
0x8c000000 -
0xb0000000 -
0xb0400000 -
0xb0800000 -
0xb0c00000 -
0xb1800000 -

0x803fffff
Ox813fffff
Ox8dffffff
OxbO3fffff
OxbO7fffff
OxbObf ffff
Oxbf ffffff
Oxblbfffff

Fl ash (MBM2OLV160)
EPROM (M27C800)
SDRAM

Et her net (DP83902A)
Super | O (FDC37C935A)
Swi t ches

LEDs

PCMCI A (Mar uBun)

5.27.6 Ethernet Driver

The ethernet driver uses a hardwired ESA which can, at present, only be changed in CDL.

5.27.7 Resource Usage

The flash based RedBoot image occupies flash addresses 0x80000000 - 0x8001ffff. RedBoot also
reserves RAM (0x8c000000 - 0x8c01ffff) for RedBoot runtime uses. RAM based RedBoot con-
figurations are designed to run from RAM at physical addresses 0x8c020000 - 0x8c07{fff. RAM
physical addresses from 0x8c080000 to the end of RAM are available for general use, such as a
temporary scratchpad for downloaded images, before they are written to flash.

5.27.8 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for TARGET,
ARCH_DIR and PLATFORM_DIR on this platform are “se77x9”, “sh” and “se77x9” respectively.
Note that the configuration export files supplied in the hal / sh/ se77x9/ VERSI ON mi sc di-

rectory in the RedBoot source tree should be used.

130

5.28 Hitachi Solution Engine 7709 (SE77X9)

5.28.1 Overview

This description covers the MS7709SEO1 variant. See Section 5.27 for instructions for the
MS7729SE01 and MS7709SSE0101 variants.

RedBoot uses the COM1 and COM2 serial ports. The default serial port settings are 38400,8,N,1.
Ethernet is also supported using the 10-base T connector.

Management of onboard flash is also supported. Two basic RedBoot configurations are supported:

* RedBoot running from RAM with RedBoot in the flash boot sector.
* RedBoot running from the board’s flash boot sector.

5.28.2 Initial Installation Method

The Solution Engine ships with the Hitachi boot monitor in EPROM which allows for initial pro-
gramming of RedBoot:

1. Set switch SW4-1 to ON [boot from EPROM]

2. Connect a serial cable to CN1 (SCI) and power up the board.

3. After the boot monitor banner, invoke the flash download/program command:
Ready >fl

4. The monitor should now ask for input:

Fl ash ROM data copy to RAM
Pl ease Send A S-format Record

At this point copy the RedBoot ROM SREC file to the serial port:
$ cat redboot_SE7709RP_ROM eprom srec > /dev/ttyS0O

Eventually you should see something like

Start Addrs = A1000000
End Addrs = ALXXXXXX
Transfer conpl ete

from the monitor.

5. Set switch SW4-1 to OFF [boot from flash] and reboot the board. You should now see the
RedBoot banner.

5.28.3 Flash management

5.28.3.1 Updating the primary RedBoot image

To update the primary RedBoot images, follow the procedures detailed in Section 4.1.3, but the
actual numbers used with the flags in the sample commands should be:

-f 0x80000000
-b 0x8c080000
-1 0x20000

131

5.28.3.2 Updating the secondary RedBoot image

To update the secondary RedBoot images, follow the procedures detailed in Section 4.1.2, but the
actual numbers used with the flags in the sample commands should be:

-f 0x80020000
-b 0x8c020000
-r 0x8c020000
-1 0x20000

5.28.4 Special RedBoot Commands

The exec command which allows the loading and execution of Linux kernels is supported for this
board (see Section 2.6). The exec parameters used for the SE77x9 are:

-b <addr>

Parameter block address. This is normally the first page of the kernel image and defaults to
0x8c101000

-i <addr>

Start address of initrd image
-j <size>

Size of initrd image
-c "args"

Kernel arguments string
-m <flags>

Mount rdonly flags. If set to a non-zero value the root partition will be mounted read-only.
-f <flags>

RAM disk flags. Should normally be 0x4000
-r <device number>

Root device specification. /dev/ram is 0x0101
1 <type>

Loader type

Finally the kernel entry address can be specified as an optional argument. The default is
0x8c102000

For the the SE77x9, Linux by default expects to be loaded at 0x8c001000 which conflicts with the
data space used by RedBoot. To work around this, either change the CONFIG_ MEMORY_ START
kernel option to a higher address, or use the compressed kernel image and load it at a higher address.
For example, setting CONFIG_ MEMORY _ START to 0x8c100000, the kernel expects to be loaded
at address 0x8c101000 with the entry point at 0x8c102000.

132

5.28.5 Memory Maps

RedBoot sets up the following memory map on the SE77x9 board.
Physi cal Address Range Description

0x80000000 - 0Ox803fffff Flash (MBMR2OLV16EO)
0x81000000 - 0x813fffff EPROM (M27CB800)
0x8c000000 - Ox8dffffff DRAM

0xb0000000 - OxbO3fffff Ethernet (DP83902A)
0xb0800000 - Oxbo8fffff 16C552A

0xb1000000 - Oxbl1lOOffff Sw tches
0xb1800000 - Oxbi8fffff LEDs

0xb8000000 - Oxbbffffff PCMCI A (MaruBun)

5.28.6 Ethernet Driver

The ethernet driver uses a hardwired ESA which can, at present, only be changed in CDL.

5.28.7 Resource Usage

The flash based RedBoot image occupies flash addresses 0x80000000 - 0x8001ffff. RedBoot also
reserves RAM (0x8c000000 - 0x8cO01fftf) for RedBoot runtime uses. RAM based RedBoot con-
figurations are designed to run from RAM at physical addresses 0x8c020000 - 0x8c07ffff. RAM
physical addresses from 0x8c080000 to the end of RAM are available for general use, such as a
temporary scratchpad for downloaded images, before they are written to flash.

5.28.8 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for TAR-
GET, ARCH_DIR and PLATFORM_DIR on this platform are “se77x9”, “sh” and “se77x9” re-
spectively. Note that the configuration export files (containing SE7709RP substring) supplied in
the hal / sh/ se77x9/ VERSI ON m sc directory in the RedBoot source tree should be used.

133

5.29 Hitachi Solution Engine 7751 (SE7751)

5.29.1 Overview

RedBoot uses the COM1 serial port. The default serial port settings are 38400,8,N,1. Ethernet is
also supported using the 10-base T connector.

Management of onboard flash is also supported. Two basic RedBoot configurations are supported:

* RedBoot running from RAM with RedBoot in the flash boot sector.
* RedBoot running from the board’s flash boot sector.

5.29.2 Initial Installation Method

The Solution Engine ships with the Hitachi boot monitor in EPROM which allows for initial pro-
gramming of RedBoot:

1. Set switches SW5-3 and SW5-4 to ON [boot from EPROM]

2. Connect a serial cable to COM1 and power up the board.

3. After the boot monitor banner, invoke the flash download/program command:
Ready >fl

4. The monitor should now ask for input:

Fl ash ROM data copy to RAM
Pl ease Send A S-format Record

At this point copy the RedBoot ROM SREC file to the serial port:
$ cat redboot ROM eprom srec > /dev/ttySO

Eventually you should see something like

Start Addrs = A1000000
End Addrs = ALXXXXXX
Transfer conpl ete

from the monitor.

5. Set switch SW5-3 to OFF [boot from flash] and reboot the board. You should now see the
RedBoot banner.

5.29.3 Flash management

5.29.3.1 Updating the primary RedBoot image
To update the primary RedBoot images, follow the procedures detailed in Section 4.1.3, but the
actual numbers used with the flags in the sample commands should be:

-f 0x80000000
-b 0x8c080000
-1 0x20000

134

5.29.3.2 Updating the secondary RedBoot image

To update the secondary RedBoot images, follow the procedures detailed in Section 4.1.2, but the
actual numbers used with the flags in the sample commands should be:

-f 0x80020000
-b 0x8c020000
-r 0x8c020000
-1 0x20000

5.29.4 Special RedBoot Commands

The exec command which allows the loading and execution of Linux kernels is supported for this
board (see Section 2.6). The exec parameters used for the SE7751 are:

-b <addr>

Parameter block address. This is normally the first page of the kernel image and defaults to
0x8c101000

-i <addr>

Start address of initrd image
-j <size>

Size of initrd image
-c "args"

Kernel arguments string
-m <flags>

Mount rdonly flags. If set to a non-zero value the root partition will be mounted read-only.
-f <flags>

RAM disk flags. Should normally be 0x4000
-r <device number>

Root device specification. /dev/ram is 0x0101
-1 <type>

Loader type

Finally the kernel entry address can be specified as an optional argument. The default is
0x8c102000

On the SE7751, Linux expects to be loaded at address 0x8c101000 with the entry point at
0x8c102000. This is configurable in the kernel using the CONFIG_ MEMORY _ START option.

5.29.5 Memory Maps

RedBoot sets up the following memory map on the SE7751 board.
Physi cal Address Range Description

135

0x80000000 - 0x803fffff Flash (MBM29LV160)
0x81000000 - 0x813fffff EPROM (M27C800)
0x8c000000 - Ox8fffffff SDRAM

0xb8000000 - Oxbh8ffffff PCMCI A (MaruBun)
0xb9000000 - Oxboffffff Sw tches
0xba000000 - Oxbaffffff LEDs

0xbd000000 - Oxbdffffff PCI MEM space
0xbe200000 - Oxbe23ffff PCI Ctrl space
0xbe240000 - Oxbe27ffff PClI 10O space

5.29.6 Ethernet Driver
The ethernet driver uses a hardwired ESA which can, at present, only be changed in CDL.

5.29.7 Resource Usage

The flash based RedBoot image occupies flash addresses 0x80000000 - 0x8001ffff. RedBoot also
reserves RAM (0x8c000000 - 0x8cO01fftf) for RedBoot runtime uses. RAM based RedBoot con-
figurations are designed to run from RAM at physical addresses 0x8c020000 - 0x8c07ffff. RAM
physical addresses from 0x8c080000 to the end of RAM are available for general use, such as a
temporary scratchpad for downloaded images, before they are written to flash.

5.29.8 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for TARGET,
ARCH_DIR and PLATFORM_DIR on this platform are “se7751”, “sh” and “se7751” respectively.
Note that the configuration export files supplied in the hal / sh/ se7751/ VERSI ONV mi sc di-
rectory in the RedBoot source tree should be used.

136

5.30 Hitachi HS7729PClI

5.30.1 Overview

RedBoot uses the COM1 and COM?2 serial ports (and the debug port on the motherboard). The
default serial port settings are 38400,8,N,1. Ethernet is also supported using a D-Link DFE-530TX
PCI plugin card.

Management of onboard flash is also supported. Two basic RedBoot configurations are supported:

* RedBoot running from RAM with RedBoot in the flash boot sector.
* RedBoot running from the board’s flash boot sector.

5.30.2 Initial Installation Method

A copy of the ROM startup version of RedBoot must be programmed into the two EPROMs. Two
files with a split version of the ROM image is provided: it is also possible to recreate these from
the redboot.bin file, but requires the split word.c program in hal/sh/hs7729pci/VERSION/misc to
be built and executed with the redboot.bin filename as sole argument.

After doing this it is advised that another ROM version of RedBoot is programmed into the flash,
and that copy be used for booting the board. This allows for software programmed updates of
RedBoot instead of having to reprogram the EPROMs.

1. Program the EPROMs with RedBoot. The .lo image should go in socket M1 and the .hi image
in socket M2.

2. Set switch SW1-6 to ON [boot from EPROM]

3. Follow the instructions under Flash management for updating the flash copy of RedBoot, but
use

-f 0x80400000

due to setting of the SW1-6 switch.

4. Set switch SW1-6 to OFF [boot from flash] and reboot the board. You should now see the
RedBoot banner. At this time you may want to issue the command

fisinit

to initialize the flash table with the correct addresses.

5.30.3 Flash management

5.30.3.1 Updating the primary RedBoot image
To update the primary RedBoot images, follow the procedures detailed in Section 4.1.3, but the
actual numbers used with the flags in the sample commands should be:

-f 0x80000000
-b 0x8c080000
-1 0x20000

137

5.30.3.2 Updating the secondary RedBoot image

To update the secondary RedBoot images, follow the procedures detailed in Section 4.1.2, but the
actual numbers used with the flags in the sample commands should be:

-f 0x80020000
-b 0x8c020000
-r 0x8c020000
-1 0x20000

5.30.4 Special RedBoot Commands

The exec command which allows the loading and execution of Linux kernels is supported for this
board (see Section 2.6). The exec parameters used for the HS7729PCI are:

-b <addr>

Parameter block address. This is normally the first page of the kernel image and defaults to
0x8c101000

-i <addr>
Start address of initrd image
-j <size>
Size of initrd image
-c "args"
Kernel arguments string
-m <flags>
Mount rdonly flags. If set to a non-zero value the root partition will be mounted read-only.
-f <flags>
RAM disk flags. Should normally be 0x4000

-r <device number>

Root device specification. /dev/ram is 0x0101
-1 <type>
Loader type

Finally the kernel entry address can be specified as an optional argument. The default is
0x8c102000

On the HS7729PCI, Linux expects to be loaded at address 0x8c101000 with the entry point at
0x8c102000. This is configurable in the kernel using the CONFIG_ MEMORY _ START option.

5.30.5 Memory Maps

RedBoot sets up the following memory map on the HS7729PCI board.
Physi cal Address Range Description

138

0x80000000 - 0x803fffff Flash (MBM29LV160)
0x80400000 - O0x807fffff EPROM (M27C800)
0x82000000 - Ox82ffffff SRAM

0x89000000 - 0Ox89ffffff SRAM

0x8c000000 - Ox8fffffff SDRAM

0xa8000000 - 0xa800ffff Superl O (FDC37C935A)
0xa8400000 - Oxa87fffff USB function (M60851C)
0xa8800000 - Oxa8bfffff USB host (SL11HT)
0xa8c00000 - Oxa8c3ffff Switches

0xa8c40000 - Oxa8c7ffff LEDs

0xa8c80000 - Oxa8cfffff Interrupt controller
0xb0000000 - Oxb3ffffff PCl (SD0O001)
0xb8000000 - Oxbbffffff PCMCI A (MaruBun)

5.30.6 Resource Usage

The flash based RedBoot image occupies flash addresses 0x80000000 - 0x8001ffff. RedBoot also
reserves RAM (0x8c000000 - 0x8cO01fftf) for RedBoot runtime uses. RAM based RedBoot con-
figurations are designed to run from RAM at physical addresses 0x8c020000 - 0x8c07ffff. RAM
physical addresses from 0x8c080000 to the end of RAM are available for general use, such as a
temporary scratchpad for downloaded images, before they are written to flash.

5.30.7 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for TARGET,
ARCH_DIR and PLATFORM DIR on this platform are “hs7729pci”, “sh” and “hs7729pci” re-
spectively. Note that the configuration export files supplied in the hal / sh/ hs7729pci / VER-
SI OV m sc directory in the RedBoot source tree should be used.

139

5.31 Cirrus Logic SEB9312 (EP93xx) (aka SEB9213)

5.31.1 Overview

RedBoot supports the serial port labelled 'modem inteface’ on the board and the ethernet port.
The default serial port settings are 38400,8,N,1. RedBoot also supports flash management on the
SEB9312. Two basic RedBoot configurations are supported:

* RedBoot running from RAM, but contained in the board’s flash boot sector (ROMRAM mode).

* RedBoot running standalone from RAM.

% NOTE

The cache is currently disabled as this feature does not seem to work properly with the beta
silicon; it interacts badly with flash management activities and network usage.

5.31.2 Initial Installation Method

A Windows or Linux utility is used to program flash using the ‘'modem interface’ serial port via
on-chip programming firmware. See board documentation for details on in situ flash programming.

5.31.3 Flash management

5.31.3.1 Updating the primary RedBoot image

To update the primary RedBoot images, follow the procedures detailed in Section 4.1.3, but the
actual numbers used with the flags in the sample commands should be:

-f 0x24000000
-b 0x00100000
-1 0x20000

Note that since the primary RedBoot image copies itself to RAM and runs from RAM (“ROM-
RAM?” startup), it is not necessary to run a separate RAM-only RedBoot during this update process;
you can use the primary RedBoot image to update the primary RedBoot image in situ.

5.31.3.2 Updating the secondary RedBoot image

To update the secondary RedBoot images, follow the procedures detailed in Section 4.1.2, but the
actual numbers used with the flags in the sample commands should be:

-f 0x24020000
-b 0x40000
-r 0x40000
-1 0x20000
-e 0x40040

5.31.4 Special RedBoot Commands

No special commands.

140

One special f confi g option is provided to control the ethernet station address (ESA or "MAC
address’).

RedBoot > fco -1
Local |IP address: 10.16.19.10

Default server |P address: 10.16.19.66
Net wor k har dwar e address [MAC]: 0x00: 0x12: 0x34: 0x56: 0x78: OxAB

ﬁédBoot> fco ep93xx_esa
ep93xx_esa: 0x00: 0x12: 0x34: 0x56: 0x78: OxAB

5.31.5 Memory Maps
The MMU page tables are located at the end of DRAM.

A NLLTN

NOTE

The virtual memory maps in this section use a C and B column to indicate whether or not the
region is cached (C) or buffered (B).

Physi cal Address Range Description
0x00000000 - OxO1ffffff DRAM
0x24000000 - Ox247fffff Fl ash
0x28000000 - 0x280fffff SRAM

0x80000000 - Ox8fffffff I/Oregisters

Vi rtual Address Range C B Description

0x00000000 - OxO1ffffff Y Y DRAM

0x24000000 - 0Ox247fffff Y Y Flash

0x28000000 - 0x2800ffff Y Y On-chip SRAM

0x80000000 - ox8fffffff NN I/Oregisters

0xC0000000 - OxCiffffff N N Non-cachable access to DRAM

The flash based RedBoot image occupies virtual addresses 0x24000000 - 0x2401ffff.

5.31.6 Resource Usage

The ROMRAM startup RedBoot image occupies RAM addresses 0x08000 - 0x3ffff. RAM ad-
dresses from 0x40000 to the end of RAM are available for general use such as a temporary scratch-
pad for downloaded images before they are written to flash.

The RAM based RedBoot image occupies RAM addresses 0x40000 - 0x68000. RAM addresses
from 0x68000 to the end of RAM are available for general use.

In either case, memory from 0x0 - OxO7ftf is reserved for system vectors and the VM translation
tables.

5.31.7 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for
ARCH_DIR and PLATFORM _DIR on this platform are “arm” and “arm9/ep93xx” respectively.

141

The value for TARGET is “seb9312”. Note that the configuration export files supplied in the
hal / arnf ar nB/ ep93xx/ VERSI ON mi sc directory in the RedBoot source tree should be
used. Use only the ROMRAM and RAM type configuration export files.

142

5.32 Atmel AT91 Evaluation Board (EB40)

5.32.1 Overview

RedBoot supports both serial ports. The default serial port settings are 38400,8,N,1. RedBoot also
supports minimal flash management on the EB40. However, since the flash device (AT29LV1024)
is so small (only the upper 64K is available for general use), only *fconfig’ is supported, along with
the simple flash write command, ’fis write’. Two basic RedBoot configurations are supported:

* RedBoot running from RAM, but contained in the board’s flash boot sector (ROMRAM mode).
* RedBoot running from RAM with RedBoot in the flash boot sector.

The RAM version is only used during the initialization of RedBoot the first time.

5.32.2 Initial Installation Method

This development board comes with ARM’s debug tool, Angel, installed in flash. At this time,
Angel will not be replaced. Rather, RedBoot will be placed in the alternate half of flash. Switch
SW1 is used which monitor to boot. Selecting SW1 to "lower mem" will choose Angel. Select
SW1 to "Upper mem" for RedBoot once it has been installed.

Set SW1 to "lower mem" and connect serial port A to a host computer. Using GDB from the host
and Angel on the board, download the RAM based version of RedBoot to the board. Once this is
started, the Angel session must be interrupted (on Linux this can be done using *Z). Follow this by
connecting to the board using minicom at 38400-8N1. At this point, RedBoot will be running on
the board in RAM. Now, download the ROMRAM version and program it to flash. Be sure and
first set SW1 to "upper mem".

armel f-gdb redboot RAM el f

(gdb) tar rdi s=/dev/ttyS0O

Angel Debug Monitor (serial) 1.04 (Advanced Rl SC Machi nes SDT 2.5) for
AT91EB40 (2.00)

Angel Debug Monitor rebuilt on Apr 07 2000 at 12:40:31
Serial Rate: 9600

Connected to ARM RDI target.

(gdb) set $ps=0xd3

(gdb) lo

Loadi ng section .romvectors, size 0x40 | ma 0x2020000
Loadi ng section .text, size Ox7fd8 | ma 0x2020040

Loadi ng section .rodata, size 0x15a0 | ma 0x2028018
Loadi ng section .data, size 0x2e4 | ma 0x20295b8

Start address 0x2020040 , | oad size 39068

Transfer rate: 6250 bits/sec, 500 bytes/wite.

(gdb) ¢

Cont i nui ng.

At this point, interrupt the Angel session and start minicom.

RedBoot > ve

RedBoot (tm bootstrap and debug environnent [RAM
Red Hat certified release, version RL.xx - built 14:09:27, Jul 20 2001

Platform Atnel AT91/EB40 (ARM/TDM)
Copyright (C) 2000, 2001, Red Hat, Inc.

143

RAM 0x02000000- 0x02080000, 0x020116d8- 0x0207f dOO avai |l abl e
FLASH: 0x01010000 - 0x01020000, 256 bl ocks of 0x00000100 bytes each

RedBoot > | oad -m ynbdem -b 0x02040000

Use minicom to send the file redboot ROMRAM.srec via YModem.
RedBoot > fi wr -f 0x01010000 -b 0x02040000 -1 0Oxe000

Set switch SW1 to "upper mem", press the "reset" pushbutton and RedBoot should come up on the
board.

5.32.3 Flash management

5.32.3.1 Updating the RedBoot image in flash

Since the primary RedBoot runs from RAM, it can be used to update itself directly. Simply follow
the steps above, starting with a connection to RedBoot running on the board.

5.32.4 Special RedBoot Commands

None.

5.32.5 Memory Maps

This processor has no MMU, so the only memory map is for physical addresses.
Physi cal Address Range Description

0x00000000 - 0x00000f f f On-chi p SRAM
0x01000000 - 0x0101ffff Fl ash
0x02000000 - 0x0207ffff RAM
Oxffe00000 - Oxffffffff I/Oregisters

The flash based RedBoot image occupies virtual addresses 0x01010000 - 0x0101dfff

5.32.6 Resource Usage

The RAM based RedBoot image occupies RAM addresses 0x02020000 - 0x0203ftff. RAM ad-
dresses from 0x02040000 to the end of RAM are available for general use such as a temporary
scratchpad for downloaded images before they are written to flash.

5.32.7 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for PLAT-
FORM_DIR on this platform is “at91”. The value for TARGET is “eb40”. Note that the config-
uration export files supplied in the hal / ar m’ at 91/ VERSI ON/ m sc directory in the RedBoot
source tree should be used. The ROMRAM configuration should be used to build the RedBoot
image to be programmed into flash. The RAM configuration is used for the initial download of
RedBoot.

144

5.33 Matsushita MN103E010 (AM33/2.0) ASB2303 Board
5.33.1 Overview

RedBoot supports both serial ports for communication and downloads. The default serial port set-
tings are 115200,8,N,1. RedBoot can run from either flash, and can support flash management for
either the boot PROM or the system flash regions. These configurations are supported:

* RedBoot running from the boot PROM and able to access the system flash (the red-
boot ROM.bin image should be used for this).

* RedBoot running from the system flash and able to access the boot PROM (the red-
boot FLASH.bin image should be used for this).

* RedBoot running from RAM and able to access the boot PROM (the redboot RAM.bin image
should be used for this).

* JTAG loadable RedBoot running from RAM and able to access the boot PROM (the
redboot FULLRAM.bin image should be used for this).

5.33.2 Initial Installation

Unless a pre-programmed system flash module is available to be plugged into a new board, Red-
Boot must be installed with the aid of a JTAG interface unit. To achieve this, the FULLRAM based
RedBoot must be loaded directly into RAM by JTAG and started, and then that must be used to
store the ROM based RedBoot into the boot PROM.

These instructions assume that you have binary images of the RAM-based and boot PROM-based
RedBoot images available.

5.33.2.1 Preparing to program the board
If the board is to be programmed, whether via JTAG or RedBoot, some hardware settings need to
be changed:

» Jumper across ST10 on the board to allow write access to the boot PROM.

» Set the switch ST6 (on the front of the board) to boot from whichever flash is not being pro-
grammed. Note that the RedBoot image cannot access the flash from which it is currently
executing (it can only access the other flash).

The RedBoot binary image files should also be copied to the TFTP pickup area on the host provid-
ing TFTP services if that is how RedBoot should pick up the images it is going to program into the
flash. Alternatively, the images can be passed by YMODEM over the serial link.

5.33.2.2 Preparing to use the JTAG debugger

The JTAG debugger will also need setting up:

1. Install the JTAG debugger software (WICE103E) on a PC running Windows (WinNT is prob-
ably the best choice for this) in “C:/PanaX”.

2. Install the Matsushita provided “project” into the “C:/Panax/wicel03e/prj” directory.

145

3. Install the RedBoot image files into the “C:/Panax/wicel03e/prj” directory under the names
redboot.ram and redboot.prom.

Make sure the PC’s BIOS has the parallel port set to full bidirectional mode.
Connect the JTAG debugger to the PC’s parallel port.

Connect the JTAG debugger to the board.

Set the switch on the front of the board to boot from “boot PROM”.

Power up the JTAG debugger and then power up the board.

A A

Connect the board’s Debug Serial port to a computer by a null modem cable.

10. Start minicom or some other serial communication software and set for 115200 baud, 1-N-8
with no flow control.

5.33.2.3 Loading the RAM-based RedBoot via JTAG

To perform the first half of the operation, the following steps should be followed:

1. Start the JTAG debugger software.

2. Run the following commands at the JTAG debugger’s prompt to set up the MMU registers on
the CPU.

ed 0xc0002000, 0x12040580

ed 0xd8c00100, 0x8400fe01

ed
ed
ed
ed
ed
ed
ed
ed
ed
ed
ed

0xd8c00200,
0xd8c00204,
0xd8c00208,
0xd8c00110,
0xd8c00210,
0xd8c00214,
0xd8c00218,
0xd8c00120,
0xd8c00220,
0xd8c00224,
0xd8c00228,

0x21111000
0x00100200
0x00000004
0x8000f c01
0x21111000
0x00100200
0x04000004
0x8600fff1
0x21111000
0x00100200
0x00000004

ed 0xda000000, 0x55561645
ed 0xda000004, 0x00000c30
ed 0xda000008, 0x9000f e01
ed 0xda00000c, 0x9200f e01
ed 0xda000000, 0xa89b0654

3. Run the following commands at the JTAG debugger’s prompt to tell it what regions of the
CPU’s address space it can access:

ex 0x80000000, Ox81ffffff,/ mexram
ex 0x84000000, Ox85ffffff,/ nmexram
ex 0x86000000, Ox867fffff,/ mexram
ex 0x90000000, Ox93ffffff,/ mexram

4. Instruct the debugger to load the RAM RedBoot image into RAM:

_pc=90000000
u_pc
rd redboot FULLRAM bi n, 90000000

5. Load the boot PROM RedBoot into RAM:

146

6.

rd redboot ROM bi n, 90100000

Start RedBoot in RAM:
g

5.33.2.4 Loading the boot PROM-based RedBoot via the RAM RedBoot

Once the RAM RedBoot is up and running, it can be communicated with by way of the serial port.
Commands can now be entered directly to RedBoot for flashing the boot PROM.

1.

Instruct RedBoot to initialise the boot PROM:
fis init

Write the previously loaded redboot ROM.bin image into the boot PROM:
fis create RedBoot -b 0x90100000

Check that RedBoot has written the image:

dunp -b 0x90100000
dunp -b 0x80000000

Other than the difference in address, the two dumps should be the same.

Close the JTAG software and power-cycle the board. The RedBoot banners should be displayed
again over the serial port, followed by the RedBoot prompt. The boot PROM-based RedBoot
will now be running.

Run the following command to initialise the system flash:
fi init

Then program the system flash based RedBoot into the system flash:
load -r -b 0x90100000 - m ynmodem

Use the terminal software to download redboot FLASH.bin using YMODEM protocol.
fis create RedBoot -b 0x90100000

% NOTE

RedBoot arranges the flashes on booting such that they always appear at the same ad-
dresses, no matter which one was booted from.

A similar sequence of commands can be used to program the boot PROM when RedBoot has
been booted from an image stored in the system flash.

load -r -b 0x90100000 - m ynodem

Use the terminal software to download redboot ROM.bin using YMODEM protocol.
fis cre RedBoot -b 0x90100000

See Section 2.5 for details on configuring the RedBoot in general, and also Section 2.4 for more
details on programming the system flash.

147

5.33.3 Additional Commands

The exec command which allows the loading and execution of Linux kernels, is supported for this
architecture (see Section 2.6). The exec parameters used for ASB2303 board are:

-w <time>
Wait time in seconds before starting kernel

-¢ "params"

Parameters passed to kernel
<addr>

Kernel entry point, defaulting to the entry point of the last image loaded

The parameter string is stored in the on-chip memory at location 0x8C001000, and is prefixed by
“cmdline:” if it was supplied.

5.33.4 Memory Maps
RedBoot sets up the following memory map on the ASB2303 board.

% NOTE

The regions mapped between 0x80000000-0x9FFFFFFF are cached by the CPU. However,
all those regions can be accessed uncached by adding 0x20000000 to the address.

Physi cal Address Range Description

0x80000000 - Ox9FFFFFFF Cached Regi on

0x80000000 - Ox81FFFFFF Boot PROM

0x84000000 - Ox85FFFFFF System Fl ash

0x86000000 - 0x867FFFFF 8KB Configurati on ROM

0x8C000000 - Ox8FFFFFFF On-Chip Menory (repeated 16Kb SRAM
0x90000000 - Ox93FFFFFF SDRAM

0xDB000008 7-segnent LED

The ASB2303 HAL makes use of the on-chip memory in the following way:

0x8C000000 - Ox8CO000FF hal _vsr_table

0x8C000100 - Ox8CO001FF hal _virtual _vector_table

0x8C001000 - Li nux command |ine (RedBoot exec command)
- Ox8CQ003FFF Energency Doubl eFault Exception Stack

Currently the CPU’s interrupt table lies at the beginning of the RedBoot image, which must there-
fore be aligned to a 0xFF000000 mask.

5.33.5 Resource Usage

The flash based RedBoot image occupies flash addresses 0x80000000 - 0x8001ffff. RedBoot also
reserves RAM (0x90000000 - 0x9001ftff) for RedBoot runtime uses. FULLRAM based RedBoot
configurations are designed to run from RAM at physical addresses 0x90000000 - 0x9001fftf.
RAM based RedBoot configurations are designed to run from RAM at physical addresses

148

0x90020000 - 0x9003ffff. RAM physical addresses from 0x90040000 to the end of RAM are
available for general use, such as a temporary scratchpad for downloaded images, before they are

written to flash.

% NOTE

The location at which RedBoot can be started is highly restricted due to the way in which the
address of the Trap Vector Table is specified to the CPU.

5.33.6 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for TARGET,
ARCH_DIR and PLATFORM_DIR on this platform are “asb”, “mn10300” and “asb” respectively.
Note that the configuration export files supplied in the hal / 10300/ asb/ VERSI ON/ mi sc

directory in the RedBoot source tree should be used.

149

5.34 Matsushita MN103E010 (AM33/2.0) ASB2305 Board
5.34.1 Overview

RedBoot supports the debug serial port and the built in ethernet port for communication and down-
loads. The default serial port settings are 115200,8,N,1 with no flow control. RedBoot can run
from either flash, and can support flash management for either the boot PROM or the system flash
regions. These configurations are supported:

* RedBoot running from the boot PROM and able to access the system flash (the red-
boot ROM.bin image should be used for this).

* RedBoot running from the system flash and able to access the boot PROM (the red-
boot FLASH.bin image should be used for this).

* RedBoot running from RAM and able to access the boot PROM (the redboot RAM.bin image
should be used for this).

5.34.2 Initial Installation

Unless a pre-programmed system flash module is available to be plugged into a new board, Red-
Boot must be installed with the aid of a JTAG interface unit. To achieve this, the RAM based
RedBoot must be loaded directly into RAM by JTAG and started, and then that must be used to
store the ROM based RedBoot into the boot PROM.

These instructions assume that you have binary images of the RAM-based and boot PROM-based
RedBoot images available.

5.34.2.1 Preparing to program the board

If the board is to be programmed, whether via JTAG or RedBoot, some hardware settings need to
be changed:

» Jumper across ST18 on the board to allow write access to the boot PROM.

» Set DIP switch S1-3 to OFF to allow RedBoot to write to the system flash.

* Set the switch S5 (on the front of the board) to boot from whichever flash is not being pro-
grammed. Note that the RedBoot image cannot access the flash from which it is currently
executing (it can only access the other flash).

The RedBoot binary image files should also be copied to the TFTP pickup area on the host provid-
ing TFTP services if that is how RedBoot should pick up the images it is going to program into the
flash. Alternatively, the images can be passed by YMODEM over the serial link.

5.34.2.2 Preparing to use the JTAG debugger

The JTAG debugger will also need setting up:

1. Install the JTAG debugger software (WICE103E) on a PC running Windows (WinNT is prob-
ably the best choice for this) in “C:/PanaX”.

2. Install the Matsushita provided “project” into the “C:/Panax/wicel03e/prj” directory.

150

3. Install the RedBoot image files into the “C:/Panax/wicel03e/prj” directory under the names
redboot.ram and redboot.prom.

Make sure the PC’s BIOS has the parallel port set to full bidirectional mode.
Connect the JTAG debugger to the PC’s parallel port.

Connect the JTAG debugger to the board.

Set the switch on the front of the board to boot from “boot PROM”.

Power up the JTAG debugger and then power up the board.

A A

Connect the board’s Debug Serial port to a computer by a null modem cable.

10. Start minicom or some other serial communication software and set for 115200 baud, 1-N-8
with no flow control.

5.34.2.3 Loading the RAM-based RedBoot via JTAG

To perform the first half of the operation, the following steps should be followed:

1. Start the JTAG debugger software.
2. Run the following commands at the JTAG debugger’s prompt to set up the MMU registers on

the CPU.

ed

ed
ed
ed
ed

ed
ed
ed
ed

ed
ed
ed
ed

ed
ed
ed
ed

ed
ed
ed
ed

ed
ed
ed
ed
ed

0xc0002000,

0xd8c00100,
0xd8c00200,
0xd8c00204,
0xd8c00208,

0xd8c00110,
0xd8c00210,
0xd8c00214,
0xd8c00218,

0xd8c00120,
0xd8c00220,
0xd8c00224,
0xd8c00228,

0xd8c00130,
0xd8c00230,
0xd8c00234,
0xd8c00238,

0xd8c00140,
0xd8c00240,
0xd8c00244,
0xd8c00248,

0xda000000,
0xda000004,
0xda000008,
0xda00000c,
0xda000000,

0x12000580

0x8000f e01
0x21111000
0x00100200
0x00000004

0x8400f e01
0x21111000
0x00100200
0x00000004

0x8600f f 81
0x21111000
0x00100200
0x00000004

0x8680f f 81
0x21111000
0x00100200
0x00000004

0x9800f 801
0x00140000
0x11011100
0x01000001

0x55561645
0x000003c0
0x9000f e01
0x9200f e01
0xa89b0654

3. Run the following commands at the JTAG debugger’s prompt to tell it what regions of the
CPU’s address space it can access:

151

4.

5.

6.

ex 0x80000000, Ox81ffffff,/ mexram
ex 0x84000000, Ox85ffffff,/ mexram
ex 0x86000000, Ox867fffff,/ nmexram
ex 0x86800000, Ox87ffffff,/ nmexram
ex 0x8c000000, Ox8cffffff,/ mexram
ex 0x90000000, Ox93ffffff,/ mexram

Instruct the debugger to load the RAM RedBoot image into RAM:
_pc=90000000

u_pc
rd redboot FULLRAM bi n, 90000000

Load the boot PROM RedBoot into RAM:
rd redboot ROM 90100000

Start RedBoot in RAM:
g

Note that RedBoot may take some time to start up, as it will attempt to query a BOOTP or
DHCEP server to try and automatically get an IP address for the board. Note, however, that it
should send a plus over the serial port immediately, and the 7-segment LEDs should display
“rh 8’)'

5.34.2.4 Loading the boot PROM-based RedBoot via the RAM RedBoot

Once the RAM RedBoot is up and running, it can be communicated with by way of the serial port.
Commands can now be entered directly to RedBoot for flashing the boot PROM.

I.

Instruct RedBoot to initialise the boot PROM:
fisinit

Write the previously loaded redboot.prom image into the boot PROM:
fis create RedBoot -b 0x90100000

Check that RedBoot has written the image:

dunp -b 0x90100000
dunp -b 0x80000000

Other than the difference in address, the two dumps should be the same.

Close the JTAG software and power-cycle the board. The RedBoot banners should be displayed
again over the serial port, followed by the RedBoot prompt. The boot PROM-based RedBoot
will now be running.

Power off the board and unjumper ST18 to write-protect the contents of the boot PROM. Then
power the board back up.

Run the following command to initialise the system flash:
fi init
Then program the system flash based RedBoot into the system flash:

load -r -b 0x90100000 redboot_ FLASH. bi n
fis create RedBoot -b 0x90100000

152

@

NOTE

RedBoot arranges the flashes on booting such that they always appear at the same ad-
dresses, no matter which one was booted from.

7. A similar sequence of commands can be used to program the boot PROM when RedBoot has
been booted from an image stored in the system flash.

-r -b 0x90100000 redboot ROM bin
-b 0x90100000

| oad
fis create RedBoot

See Section 2.5 for details on configuring the RedBoot in general, and also Section 2.4 for more
details on programming the system flash.

5.34.3 Additional Commands

The exec command which allows the loading and execution of Linux kernels, is supported for this
architecture (see Section 2.6). The exec parameters used for ASB2305 board are:

-w <time>
Wait time in seconds before starting kernel
-¢ "params"

Parameters passed to kernel
<addr>

Kernel entry point, defaulting to the entry point of the last image loaded
The parameter string is stored in the on-chip memory at location 0x8C001000, and is prefixed by

“cmdline:” if it was supplied.

5.34.4 Memory Maps
RedBoot sets up the following memory map on the ASB2305 board.

% NOTE

The regions mapped between 0x80000000-0x9FFFFFFF are cached by the CPU. However,
all those regions can be accessed uncached by adding 0x20000000 to the address.

Physi cal Address Range Description

0x80000000 - Ox9FFFFFFF Cached Regi on

0x80000000 - Ox81FFFFFF Boot PROM

0x84000000 - Ox85FFFFFF System Fl ash

0x86000000 - 0x86007FFF 64Kbit Sys Config EEPROM
0x86F90000 - 0x86F90003 4x 7-segnent LEDs

0x86FA0000 - O0x86FA0003 Software DI P Switches

0x86FB0000 - 0x86FBO01F PC16550 Debug Serial Port
0x8C000000 - Ox8FFFFFFF On-Chip Menory (repeated 16Kb SRAM
0x90000000 - Ox93FFFFFF SDRAM

153

0x98000000 - Ox9BFFFFFF Paged PCI Menory Space (64M)
0x9C000000 - Ox9DFFFFFF PCl Local SRAM (32Mo)
0x9E000000 - Ox9EO3FFFF PCl |/ O Space

O0x9E040000 - Ox9EO0400FF AMB3-PCl Bridge Registers
OX9FFFFFF4 - Ox9FFFFFF7 PCl Menory Page Regi ster
OX9FFFFFF8 - Ox9FFFFFFF PClI Config Registers
0xA0000000 - OxBFFFFFFF Uncached M rror Region
0xC0000000 - OxDFFFFFFF CPU Control Registers

The ASB2305 HAL makes use of the on-chip memory in the following way:

0x8C000000 - Ox8CO000FF hal _vsr_table
0x8C000100 - Ox8CO0001FF hal _virtual _vector_table
0x8C001000 - Li nux command |ine (RedBoot exec command)

- Ox8C003FFF Energency Doubl eFault Exception Stack

Currently the CPU’s interrupt table lies at the beginning of the RedBoot image, which must there-
fore be aligned to a 0xFF000000 mask.

5.34.5 Resource Usage

The flash based RedBoot image occupies flash addresses 0x80000000 - 0x8001ffff. RedBoot also
reserves RAM (0x90000000 - 0x9001ftff) for RedBoot runtime uses. RAM based RedBoot con-
figurations are designed to run from RAM at physical addresses 0x90000000 - 0x9001ftff. RAM
physical addresses from 0x90050000 to the end of RAM are available for general use, such as a
temporary scratchpad for downloaded images, before they are written to flash.

% NOTE

The location at which RedBoot can be started is highly restricted due to the way in which the
address of the Trap Vector Table is specified to the CPU.

5.34.6 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for
TARGET, ARCH_DIR and PLATFORM DIR on this platform are “asb2305”, “mnl10300”
and “asb2305” respectively. =~ Note that the configuration export files supplied in the
hal / m10300/ asb2305/ VERSI ON m sc directory in the RedBoot source tree should be
used.

154

5.35 Altera Excalibur ARM9 (excalibur_arm9)

5.35.1 Overview

RedBoot supports the serial port labelled P2 on the board. The default serial port settings are
57600,8,N,1. RedBoot also supports flash management on the Excalibur. Two basic RedBoot con-
figurations are supported:

* RedBoot running from the board’s flash boot sector (ROM).
* RedBoot running from RAM with RedBoot in the flash boot sector (ROMRAM/REDBOOT).

% NOTE

RedBoot is currently hardwired to use a 128MB SDRAM SIMM module.

5.35.2 Initial Installation Method

A Windows utility (exc_flash programmer.exe) is used to program flash using the ByteBlasterMV
JTAG unit. See board documentation for details on in situ flash programming.

For ethernet to work (under Linux) the following jumper settings should be used on a REV 2 board:

SW2-9 : OFF
U179 :2-3
JP14-18 : OPEN
JP40-41 :2-3
JP51-55 :2-3

5.35.3 Flash management

5.35.3.1 Updating the primary RedBoot image

To update the primary RedBoot image (of startup type ROMRAM or REDBOOT), follow the proce-
dures detailed in Section 4.1.3, but the actual numbers used with the flags in the sample commands
should be:

-f 0x40000000
-b 0x40000
-1 0x20000

When updating the image, the flash should be unlocked before programming, and relocked after-
wards (a board reset will also cause the flash to be relocked). This is done with the commands:

fis unlock -f 0x40000000 -1 0x20000

and
fis lock -f 0x40000000 -1 0x20000

155

A NLLTN

NOTE

The ROMRAM and REDBOOT configurations differ only in the memory layout (ROM-
RAM mode runs RedBoot from 0x00008000 while REDBOOT mode runs RedBoot from
0x07180000). The REDBOOT configuration allows applications to be loaded and run from
address 0x00008000.

% NOTE

Since the default RedBoot flash image is of startup type ROMRAM or REDBOOT, it is not
necessary to use the two-step update process with the RAM startup type of RedBoot; it is
possible to update the image in flash directly.

5.35.4 Special RedBoot Commands

The exec command which allows the loading and execution of Linux kernels, is supported for this
board (see Section 2.6). The exec parameters used for the Excalibur are:

-b <addr>

Location Linux kernel was loaded to
-1 <len>

Length of kernel

-c "params"

Parameters passed to kernel
-r <addr>

“initrd” ramdisk location
-s <len>

Length of initrd ramdisk
The parameters for kernel image base and size are automatically set after a load operation. So one
way of starting the kernel would be:

RedBoot > | oad -r -b 0x100000 zl nage

Raw file | oaded 0x00100000- 0x001a3d6c

RedBoot > exec -c "consol e=ttyUAQ, 57600"

Usi ng base address 0x00100000 and | ength 0x000a3d6c
Unconpressi ng Linux.....

An image could also be put in flash and started directly:

RedBoot > exec -b 0x40400000 -1 0Oxc0000 -c "consol e=ttyUAO, 57600"
Unconpressi ng Linux.....

156

5.35.5 Memory Maps
The MMU page tables are located at 0x4000.

% NOTE

The virtual memory maps in this section use a C and B column to indicate whether or not the
region is cached (C) or buffered (B).

Physi cal Address Range Description

0x00000000 - OxO7ffffff SDRAM
0x08000000 - 0Ox0805ffff On-chi p SRAM
0x40000000 - Ox40ffffff Fl ash
Ox7fffc000 - Ox7fffffff I/Oregisters
0x80000000 - Ox8001ffff PLD

Vi rtual Address Range C B Description
0x00000000 - OxO7ffffff Y Y SDRAM
0x08000000 - 0x0805ffff Y Y On-chip SRAM
0x40000000 - 0x403fffff N Y Flash
Ox7fffc000 - Ox7fffffff NN I/Oregisters
0x80000000 - 0x8001ffff N N PLD

The flash based RedBoot image occupies virtual addresses 0x40000000 - 0Ox4001ffff.

5.35.6 Resource Usage

The ROMRAM startup type RedBoot image occupies RAM addresses 0x00000 - 0x3ffff. RAM
addresses from 0x40000 to the end of RAM are available for general use such as a temporary
scratchpad for downloaded images before they are written to flash.

The REDBOOT startup type RedBoot image occupies RAM addresses 0x07f80000 - 0xO7ftffttt.
RAM addresses from 0x8000 to about 0x07f00000 are available for general use such as a temporary
scratchpad for downloaded images before they are written to flash.

5.35.7 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for ARCH_DIR
and PLATFORM_DIR on this platform are “arm” and “arm9/excalibur” respectively. The value
for TARGET is “excalibur_arm9”. Note that the configuration export files supplied in the
hal / arnf ar nB/ excal i bur/ VERSI ON mi sc directory in the RedBoot source tree should
be used.

157

5.36 Agilent AAED2000 ARM9 (aaed)

5.36.1 Overview

RedBoot supports the serial and ethernet ports on the board. The default serial port settings are
38400,8,N,1. RedBoot also supports flash management on the AAED2000. Two basic RedBoot
configurations are supported:

* RedBoot being automatically executed by the on-board ARM Boot Monitor, running from
RAM.

* RedBoot running from RAM with RedBoot in the flash boot sector.

5.36.2 Initial Installation Method

It is possible to install RedBoot in one of two ways. Either as the primary bootmonitor on the
board (installed to blocks 0-1 of the flash) or as the secondary bootmonitor on the board (installed
to blocks 1-2 of the flash).

Presently, only the former method is supported.

5.36.2.1 RedBoot as Primary Bootmonitor
RedBoot is installed in flash using the on-board ARM Boot Monitor.

Boot the board while pressing SPACE. This should bring up the Boot Monitor:

ARM boot PROM [Version 1.3] Rebuilt on Jul 16 2001 at 16:21:36
Runni ng on a P920 board Eval uati on Board

Board Revision V1.0, ARMB20T processor Processor

Menmory Size is 32MBytes, Flash Size is 32MBytes

Copyright (c) ARMLimted 1999 - 2001. All rights reserved.
Board designed by ARM Linited

Har dwar e support provided at http://ww. arm com

For help on the avail able comuands type ? or h

boot Mbnitor >

Download the RAM startup version of RedBoot configured as a primary bootmonitor using the
ARM bootmonitor’s SREC-download command:

boot Mnitor > m

Load Mdtorola S-Record inage into menory and execute it
The S-Record | oader only accepts input on the serial port.
Record addresses nust be between 0x00008000 and Ox01EOF510.
Type Cirl/C to exit |oader.

Use the terminal emulator’s ASCII upload command, or (on Linux) simply cat the file to the serial
port:

$ cat redboot_prinmary_RAM redboot.srec >/dev/ttySl
You should see RedBoot start up:

FLASH configuration checksumerror or invalid key
Et hernet et hO: MAC address 00: 30: d3: 03: 04: 99
| P: 192.168. 42. 111, Default server: 192.168.42.3

158

RedBoot (tm bootstrap and debug environnent [RAM
Non-certified rel ease, version UNKNOAN - built 13:15:40, Nov 9 2001

Pl at form AAED2000 system (ARMB) [Pri mary]
Copyright (C 2000, 2001, Red Hat, Inc.

RAM 0x00000000- 0x01f 80000, 0x0006f 208- 0x01f 51000 avail abl e
FLASH: 0x60000000 - 0x62000000, 256 bl ocks of 0x00020000 bytes each.
RedBoot >

As can be seen from the output above, the network has been configured to give the board an IP
address and information about the default server. If things are not set up on your network, you
can still continue, but use the Y-modem download method when loading the RedBoot ROMRAM
image. Now initialize RedBoot’s FIS:

RedBoot > fi init

About to initialize [format] FLASH i nage system - are you sure (y/n)? y

*** |nitialize FLASH | nrage System

WAr ni ng: device contents not erased, some bl ocks may not be usable

Erase from 0x61f e0000- 0x62000000: .
Pr ogram from 0x01f 5f 000- Ox01f 5f 300 at 0x61f e0000:

Download the ROMRAM version of RedBoot via ethernet:
RedBoot > | oad -b 0x100000 redboot pri mary_ ROVRAM r edboot . srec

or using serial Y-modem protocol:
RedBoot > | oad -npbde ynodem -b 0x100000

(Use the terminal emulator’s Y-modem upload command to send the file r edboot _pri -
mary _ROVRAM r edboot . srec.) When the image has been downloaded, program it into
flash:
Address offset = 0x00ff 8000
Entry point: 0x00008040, address range: 0x00008000-0x0002da80
RedBoot > fi cr RedBoot -b 0x100000
An i nage naned ' RedBoot’' exists - are you sure (y/n)? vy
* CAUTI ON * about to program’ RedBoot’
at 0x60000000. . 0x6003ffff from Ox00100000 - are you sure (y/n)? vy
Erase from 0x60000000- 0x60040000: ..
Pr ogram from 0x00100000- 0x00140000 at 0x60000000:
Erase from 0x61f e0000- 0x62000000: .
Program from 0x01f 5f 000- Ox01f 7f 000 at 0x61f e0000:

Now reset the board. You should see the RedBoot banner.

5.36.3 Flash management

5.36.3.1 Updating the RedBoot image

Since the RedBoot image is a ROMRAM-startup type, it is not necessary to load and run the RAM
startup RedBoot image to update the image in flash. Doing so causes no harm though - but ignoring
the step saves some time. For the same reason, there has not been reserved space in the flash for a
"RedBoot[backup]" image.

To update the primary RedBoot image, follow the procedures detailed in Section 4.1.3, but let
RedBoot find the correct flash address (the -f option) since this is different between the bootmonitor

159

configurations. If specifying it, be sure to get it right - the actual numbers used with the flags in
the sample commands should for a RedBoot image configured to be the primary bootmonitor be:

-f 0x60000000
-b 0x100000
-1 0x40000

5.36.4 Special RedBoot Commands
The exec command which allows the loading and execution of Linux kernels, is supported for this
board (see Section 2.6). The exec parameters used for the AAED2000 are:
-b <addr>
Location Linux kernel was loaded to
-1 <len>
Length of kernel
-¢ "params"
Parameters passed to kernel
-r <addr>
“initrd’ ramdisk location
-s <len>
Length of initrd ramdisk

The parameters for kernel image base and size are automatically set after a load operation. So one
way of starting the kernel would be:

RedBoot > |l oad -r -b 0x100000 zl nage

Raw file | oaded 0x00100000- 0x001a3d6c

RedBoot > exec -c "consol e=ttyACO, 38400"

Usi ng base address 0x00100000 and | ength 0x000a3d6c
Unconpressing Linux.....

An image could also be put in flash and started directly:

RedBoot > exec -b 0x60040000 -1 0Oxc0000 -c "consol e=ttyACO, 38400"
Unconpressi ng Linux.....

5.36.5 Memory Maps
The MMU page tables are located at 0x4000.

% NOTE

The virtual memory maps in this section use a C and B column to indicate whether or not the
region is cached (C) or buffered (B).

160

Physi cal Address Range Description

0x00000000 - OxO1ffffff Fl ash

0x10000000 Ox100f ffff Et her net

0x30000000 Ox300f ffff Board registers
0x40000000 - Ox4fffffff PCMCI A Sl ot (0)
0x50000000 Ox5fffffff Conpact Flash Slot (1)
0x80000000 0x800037f f I/Oregisters

0xb0060000 - OxbOOfffff On-chi p SRAM

0xf 0000000 - Oxfd3fffff SDRAM

Vi rtual Address Range C B Description
0x00000000 - OxO01f7ffff Y Y SDRAM

0x01f 80000 Ox01ffffff Y Y SDRAM (used for LCD frame buffer)
0x10000000 - Ox100fffff N N Ethernet

0x30000000 0x300fffff N N Board registers
0x40000000 - Oox4fffffff NN PCMCIA Slot (0)
0x50000000 ox5fffffff N N Conpact Flash Slot (1)
0x60000000 - Ox61ffffff N N Flash

0x80000000 0x800037ff N N 1/Oregisters

0xf 0000000 - Oxffffffff N N SDRAM (uncached)

5.36.6 Resource Usage

The RAM based RedBoot image occupies RAM addresses 0x40000 - Ox7ffff. The
flash based RedBoot image occupies RAM addresses 0Xx0O0000000 - 0x0003ffff. RAM
addresses from 0x80000 to the end of RAM are available for general use such as a temporary
scratchpad for downloaded images before they are written to flash. If configured to use the LCD
screen, additional DRAM from 0x01f 80000 - OxO1ffffff is used for the LCD frame
buffer.

5.36.7 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for
ARCH_DIR and PLATFORM_DIR on this platform are “arm” and “arm9/aaed2000” respectively.
The value for TARGET i1s “aaed”. Note that the configuration export files supplied in the
hal / ar ml ar @/ aaed2000/ VERSI OV m sc directory in the RedBoot source tree should
be used.

161

5.37 NEC DDB-VRC4375

5.37.1 Overview

RedBoot supports only serial port 1, which is connected to the upper of the stacked serial connec-
tors on the board. The default serial port settings are 38400,8,N,1. FLASH management is also
supported. Two basic RedBoot configurations are supported:

* RedBoot running from RAM which has been relocated from the board’s flash boot sector.
* RedBoot running from RAM with RedBoot in the flash boot sector.

Since the normal RedBoot configuration does not use the FLASH ROM except during startup, it is
unnecessary to load a RAM-based RedBoot before reprogramming the FLASH.

5.37.2 Initial Installation Method

A device programmer should be used to program a socketed FLASH part (AMD 29F040). The
board as delivered is configured for a 512K EPROM. To install a FLASH ROM, Jumpers J30, J31
and J36 need to be changed as described in the board’s User Manual.

Since RedBoot for this board relocates itself from ROM to RAM at startup, it is not necessary to
run a secondary RAM based version of RedBoot to update the main FLASH image. Instead this
can be done from the primary version of RedBoot.

5.37.2.1 Updating the primary RedBoot image

To update the primary RedBoot image, follow the procedures detailed in Section 4.1.3, but the
actual numbers used with the flags in the sample commands should be:

-b 0x80100000

Flash locking and unlocking is not required. Note that these values are inferred when updating the
RedBoot image once the f i S cr eat e has been run.

5.37.3 Special RedBoot Commands

None.

5.37.4 Memory Maps

RedBoot sets up the memory map primarily as described in the board’s User Manual. There are
some minor differences, noted in the following table:

Physi cal Vi rtual Resour ce

Addr esses Addr esses

00000000- 01FFFFFF 80000000- 81FFFFFF Base SDRAM (cached)
00000000- 01FFFFFF A0000000- ALFFFFFF Base SDRAM (uncached)
0C000000- 0COBFFFF AC000000- ACOB0O000 PCl | O space
0F000000- OFO001FF AF000000- AFOO01FF VRCA375 Regi sters
10000000- 1COFFFFF BC0O00000- BCOFFFFF VRCA372 Regi sters
1C100000- 1DFFFFFF BC100000- BDFFFFFF PCl Menory space

162

1FCO00000- 1FC7FFFF BFCO00000- BFC7FFFF FLASH ROM

80000000- 8000000D C0000000- CO00000D RTC

8000000E- 80007FFF CO00000E- CO007FFF NVRAM

81000000- 81FFFFFF C1000000- C1FFFFFF Z85C30 DUART
82000000- 82FFFFFF C2000000- C2FFFFFF 78536 Ti mer

83000000- 83FFFFFF C3000000- C3FFFFFF 8255 Parallel port
87000000- 87FFFFFF C7000000- C7FFFFFF Seven segnent display

% NOTE

By default the VRC4375 SIMM control registers are not programmed since the values used
must depend on the SIMMs installed. If SIMMs are to be used, correct values must be placed
in these registers before accessing the SIMM address range.

AL NLLTN

NOTE

The allocation of address ranges to devices in the PCI IO and memory spaces is handled by
the eCos PCI support library. They do not correspond to those described in the board User
Manual.

% NOTE

The MMU has been set up to relocate the VRC4372 supported devices mapped at physical
addresses 0x8xxxxxxx to virtual addresses OXCxXXXXXXX.

5.37.5 Resource Usage

The RedBoot image occupies flash addresses 0x1fc00000 - Ox1fclffff. To execute it copies it-
self out of there to RAM at 0x80000000. RedBoot reserves 1IMB of RAM from 0x80000000 to
0x800FFFFF for its own use. The top IMB of RAM from 0x81F00000 to 0x8 1 FFFFFF is reserved
for use by the PCI Ethernet device. RAM based RedBoot configurations are designed to run from
RAM at virtual addresses 0x80100000 - 0x8011{fff. RAM virtual addresses from 0x80020000 to
the start of the PCI window are available for general use, such as a temporary scratchpad for down-
loaded images, before they are written to flash.

5.37.6 Ethernet Driver

The ethernet driver is in two parts:

A generic ether driver for the Intel 121143 device is located indevs/ et h/i ntel /1 21143. Its
package name is CYGPKG_DEVS _ETH | NTEL_| 21143.

The platform-specific ether driver is devs/ et h/ m ps/vrc4375. Its package is CYG
PKG_DEVS _ETH M PS_VRCA375. This tells the generic driver the address in IO memory of
the chip, for example, and other configuration details. The ESA (MAC address) is by default
collected from on-board serial EEPROM, unless configured statically within this package.

163

5.37.7 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for TARGET,
ARCH_DIR and PLATFORM_DIR on this platform are “vrc4375”, “mips” and “vrc4375” respec-
tively. The configuration export files supplied in the hal / m ps/vrc4375/ VERSI ON mi sc
directory in the RedBoot source tree should be used. In general only the ROMRAM variant should

need to be used.

164

5.38 Fujitsu FR-V 400 (MB-93091)
5.38.1 Overview

RedBoot supports both serial ports, which are available via the stacked serial connectors on the
mother board. The topmost port is the default and is considered to be port 0 by RedBoot. The
bottommost port is serial port 1. The default serial port settings are 38400,8,N,1.

FLASH management is also supported, but only for the FLASH device in IC7. This arrangement
allows for IC8 to retain either the original Fujitsu board firmware, or some application specific
contents. Two basic RedBoot configurations are supported:

* RedBoot running from RAM which has been relocated from the board’s flash boot sector. This
mode is known as ROMRAM.

* RedBoot running from RAM, loaded by some other means.

Since the normal RedBoot configuration does not use the FLASH ROM except during startup, it is
unnecessary to load a RAM-based RedBoot before reprogramming the FLASH.

5.38.2 Initial Installation Method

RedBoot can be installed by directly programming the FLASH device in IC7 or by using the Fujitsu
provided software to download and install a version into the FLASH device. Complete instructions
are provided separately.

5.38.2.1 Updating the primary RedBoot image

To update the primary RedBoot image, follow the procedures detailed in Section 4.1.3, but the
actual numbers used with the flags in the sample commands should be:

-f OxFF000000
-b 0x100000
-1 0x40000

Note that these values are inferred when updating the RedBoot image once thefi S cr eat e has
been run.

5.38.3 Special RedBoot Commands

None.

5.38.4 Memory Maps

The memory map of this platform is fixed by the hardware (cannot be changed by software). The
only attributes which can be modified are control over cacheability, as noted below.

Addr ess Cache? Resour ce

00000000- 03EFFFFF Yes SDRAM (via plugin DI MV
03F00000- 03FFFFFF No SDRAM (used for PCl wi ndow)
10000000- 1FFFFFFF No VB86943 PCl bridge

165

20000000- 201FFFFF
21000000- 23FFFFFF
24000000- 25FFFFFF
26000000- 2FFFFFFF
30000000- FDFFFFFF
FE000000- FEFFFFFF
FF000000- FF1FFFFF
FF200000- FF3FFFFF
FF400000- FFFFFFFF

A NLLTN

NOTE

The only configuration currently suppored requires a 64MB SDRAM DIMM to be present on
the CPU card. No other memory configuration is supported at this time.

6663668656

5.38.5 Resource Usage

The RedBoot image occupies flash addresses O0xFF000000 - OxFFO3FFFF. To execute it copies
itself out of there to RAM at 0x03E00000. RedBoot reserves memory from 0x00000000 to
0x0001FFFF for its own use. User programs can use memory from 0x00020000 to 0Ox03DFFFFF.
RAM based RedBoot configurations are designed to run from RAM at 0x00020000.

5.38.6 Rebuilding RedBoot

The instructions in Chapter 3, Rebuilding RedBoot should be followed. The values for TARGET,
ARCH_DIR and PLATFORM_DIR on this platform are “frv400”, “frv’’ and “frv400” respectively.
The configuration export files supplied in the hal / fr v/ f r v400/ VERSI ON/ m sc directory in
the RedBoot source tree should be used. In general only the ROMRAM variant should need to be

used.

SRAM

Mot her board resources
PCl 1/0O space

PCl Menory space
Unused

1/ O devi ces

| C7 - RedBoot FLASH
|1 C8 - unused FLASH

M sc other 1/0

166

